Please use this identifier to cite or link to this item: https://hdl.handle.net/10356/182296
Title: Two dimensional CuInP2S6h-BN/MoTe2 van der Waals heterostructure phototransistors with double gate control
Authors: Li, Sina
Zhou, Junjie
Xiong, Jingxian
Yang, Sixian
Zhang, Jielian
Fan, Weijun
Li, Jingbo
Keywords: Engineering
Issue Date: 2024
Source: Li, S., Zhou, J., Xiong, J., Yang, S., Zhang, J., Fan, W. & Li, J. (2024). Two dimensional CuInP2S6h-BN/MoTe2 van der Waals heterostructure phototransistors with double gate control. Journal of Materials Chemistry C. https://dx.doi.org/10.1039/d4tc02616k
Journal: Journal of Materials Chemistry C
Abstract: Ferroelectric materials have demonstrated significant potential in the manipulation of optoelectronic processes in emerging device architectures. However, research exploring the synergy between ferroelectric materials and two-dimensional semiconductor materials, as well as direct modulation of the interface band alignment of two-dimensional semiconductor materials in heterostructures, remains limited. Here, we report a ferroelectric photodetector composed of a CuInP2S6 gate, an h-BN dielectric layer, and a MoTe2 channel. Due to the presence of directional ferroelectric spontaneous polarization charges under an applied electric field, the interface band structure is effectively modulated, greatly enhancing the generation, separation, and transport efficiency of photo-generated electron-hole pairs. Compared to non-ferroelectric back-gated modulation (Si), the photocurrent is boosted by an order of magnitude under top-gate modulation, while the dark current is effectively suppressed. The ferroelectric photodetector exhibits a high responsivity modulation of 6.07 A W−1 and a high detection rate of 5.67 × 1011 jones. Interestingly, clockwise hysteresis is observed under both single top-gate (VTG) and silicon dioxide back-gate (VBG) modulation, attributed to the charge dynamics at the interface and gate coupling effects. This work reveals the substantial potential of the detector for high-performance optical sensing through the modulation of the interface band structure of semiconductor junctions by two-dimensional ferroelectric materials.
URI: https://hdl.handle.net/10356/182296
ISSN: 2050-7526
DOI: 10.1039/d4tc02616k
Schools: School of Electrical and Electronic Engineering 
Rights: © The Author(s). All rights reserved.
Fulltext Permission: none
Fulltext Availability: No Fulltext
Appears in Collections:EEE Journal Articles

Page view(s)

20
Updated on Mar 16, 2025

Google ScholarTM

Check

Altmetric


Plumx

Items in DR-NTU are protected by copyright, with all rights reserved, unless otherwise indicated.