dc.contributor.authorHuang, Zhiwei
dc.date.accessioned2009-07-02T02:50:14Z
dc.date.accessioned2017-07-23T08:27:00Z
dc.date.available2009-07-02T02:50:14Z
dc.date.available2017-07-23T08:27:00Z
dc.date.copyright2009en_US
dc.date.issued2009
dc.identifier.citationHuang, Z. (2009). Reliability assessment of damaged ductile RC frame structures against progressive collapse in close-in detonation conditions. Doctoral thesis, Nanyang Technological University, Singapore.
dc.identifier.urihttp://hdl.handle.net/10356/18621
dc.description.abstractA new approach is developed based upon the alternative load path (ALP) concept to assess the reliability of multi-storey ductile frame structures subjected to one column failure under close-in detonation conditions. This approach is based on a combination of the Monte Carlo Simulation method and an iterative algorithm developed for calculating structural performance function. The damaged ductile frame structure is simulated with a lumped plasticity model, while the singularity of the structural stiffness matrix is adopted as a reasonable failure criterion for structures under static loading conditions. A performance function is established based on the virtual work principle, critical collapse mechanism criterion and a construction system. An iterative procedure is developed to solve the performance function where the interaction between the axial force and the strength of the end springs is considered in the calculation of the minimum internal virtual work. A flowchart based on a combination of the developed procedure and the Monte Carlo Simulation method (MCS) is presented for the reliability assessment of damaged structures under static loading conditions. In order to consider the dynamic effects induced by the sudden loss of a column in a close-in detonation, the method for the reliability assessment of the damaged ductile frame against progressive collapse under static loading conditions is further developed. The safety of the frame structure is evaluated based on two aspects: (1) the flexural response and (2) the shear response of the structure. Two performance functions are formed for structural flexural response to consider the structural collapse due to the lack of strength or deformation capacity of the structural weakest collapse mechanism. A third performance function is constructed to consider shear response. Since any of the above three performance functions less than zero will lead to structure progressive collapse, a global performance function is calculated by taking the minimum of these functions.en_US
dc.format.extent229 p.en_US
dc.language.isoenen_US
dc.subjectDRNTU::Engineering::Civil engineering::Structures and designen_US
dc.titleReliability assessment of damaged ductile RC frame structures against progressive collapse in close-in detonation conditionsen_US
dc.typeThesis
dc.contributor.schoolSchool of Civil and Environmental Engineeringen_US
dc.contributor.supervisorLi Bingen_US
dc.description.degreeDOCTOR OF PHILOSOPHY (CEE)en_US


Files in this item

FilesSizeFormatView
HuangZhiwei2009.pdf2.311Mbapplication/pdfView/Open

This item appears in the following Collection(s)

Show simple item record