Please use this identifier to cite or link to this item: https://hdl.handle.net/10356/18847
Title: Simulated training on interventional diagnostic device
Authors: Chiang, Patricia Wei Yin.
Keywords: DRNTU::Engineering::Mechanical engineering::Assistive technology
Issue Date: 2008
Abstract: A novel cardiac interventional device has been investigated for simulated training. The novel device has both diagnostic and therapeutic functions where electromechanical mapping of the heart can predict myocardiurn viability and transendocardial stem cell injection into hibernating myocardium can promote angiogenesis and improve the ischemic condition in heart disease. A comprehensive literature survey conducted reveals the technical areas of electromagnetic sensor positioning, biomedical signal processing for wall motion and electrical signal propagation, geometrical modeling, 3D medical imaging and visualization, and diagnosis and interventional treatment of cardiovascular diseases. Detail procedures of the electromagnetic mapping and injection application have been discussed from both clinical and engineering point of views. The simulator tool for electromechanical mapping has been designed with fundamental blocks of heart and catheter model, voxel representation, catheter-heart- wall interaction, electrical and mechanical models, geometrical surface models, visualization modules, graphical user interface and foundation libraries. The heart model is based on a tetrahedron mesh model while the catheter model is described by 2D parameterization of tip and deflection curvatures. Voxel representation is achieved with volume representation using tetrahedron test and nearest distance computation using surface identification and projection validation. Catheter-heart-wall interaction is modeled through geometrical intersections between heart-wall plane and catheter segment and iterative adjustments progressing from the pivot to the catheter tip. The simulator tool is completed with 3D and slice visualization of the heart model, catheter maneuver and interaction-based catheter deformation.
URI: http://hdl.handle.net/10356/18847
Fulltext Permission: restricted
Fulltext Availability: With Fulltext
Appears in Collections:MAE Theses

Files in This Item:
File Description SizeFormat 
ChiangPatriciaWeiYin08.pdf
  Restricted Access
25.87 MBAdobe PDFView/Open

Page view(s) 10

225
checked on Oct 28, 2020

Download(s) 10

8
checked on Oct 28, 2020

Google ScholarTM

Check

Items in DR-NTU are protected by copyright, with all rights reserved, unless otherwise indicated.