Please use this identifier to cite or link to this item: https://hdl.handle.net/10356/18847
Full metadata record
DC FieldValueLanguage
dc.contributor.authorChiang, Patricia Wei Yin.-
dc.date.accessioned2009-07-20T05:49:49Z-
dc.date.available2009-07-20T05:49:49Z-
dc.date.copyright2008en_US
dc.date.issued2008-
dc.identifier.urihttp://hdl.handle.net/10356/18847-
dc.description.abstractA novel cardiac interventional device has been investigated for simulated training. The novel device has both diagnostic and therapeutic functions where electromechanical mapping of the heart can predict myocardiurn viability and transendocardial stem cell injection into hibernating myocardium can promote angiogenesis and improve the ischemic condition in heart disease. A comprehensive literature survey conducted reveals the technical areas of electromagnetic sensor positioning, biomedical signal processing for wall motion and electrical signal propagation, geometrical modeling, 3D medical imaging and visualization, and diagnosis and interventional treatment of cardiovascular diseases. Detail procedures of the electromagnetic mapping and injection application have been discussed from both clinical and engineering point of views. The simulator tool for electromechanical mapping has been designed with fundamental blocks of heart and catheter model, voxel representation, catheter-heart- wall interaction, electrical and mechanical models, geometrical surface models, visualization modules, graphical user interface and foundation libraries. The heart model is based on a tetrahedron mesh model while the catheter model is described by 2D parameterization of tip and deflection curvatures. Voxel representation is achieved with volume representation using tetrahedron test and nearest distance computation using surface identification and projection validation. Catheter-heart-wall interaction is modeled through geometrical intersections between heart-wall plane and catheter segment and iterative adjustments progressing from the pivot to the catheter tip. The simulator tool is completed with 3D and slice visualization of the heart model, catheter maneuver and interaction-based catheter deformation.en_US
dc.format.extent122 p.en_US
dc.language.isoenen_US
dc.subjectDRNTU::Engineering::Mechanical engineering::Assistive technologyen_US
dc.titleSimulated training on interventional diagnostic deviceen_US
dc.typeThesis-
dc.contributor.supervisorCai Yiyuen_US
dc.contributor.schoolSchool of Mechanical and Aerospace Engineeringen_US
dc.description.degreeMaster of Science (Biomedical Engineering)en_US
item.fulltextWith Fulltext-
item.grantfulltextrestricted-
Appears in Collections:MAE Theses
Files in This Item:
File Description SizeFormat 
ChiangPatriciaWeiYin08.pdf
  Restricted Access
25.87 MBAdobe PDFView/Open

Page view(s) 20

225
Updated on Dec 2, 2020

Download(s)

8
Updated on Dec 2, 2020

Google ScholarTM

Check

Items in DR-NTU are protected by copyright, with all rights reserved, unless otherwise indicated.