Please use this identifier to cite or link to this item:
Title: Controller design for nonlinear micromachined parallel plate actuators
Authors: Nikapanah Mohammad Hossein
Keywords: DRNTU::Engineering::Electrical and electronic engineering::Microelectromechanical systems
Issue Date: 2009
Source: Nikapanah Mohammad Hossein. (2009). Controller design for nonlinear micromachined parallel plate actuators. Master’s thesis, Nanyang Technological University, Singapore.
Abstract: The use of electrostatic actuation for microelectromechanical systems (MEMS) is attractive because of the high energy densities and large forces available in microscale devices. Nonlinear micromachined electrostatic parallel plate microactuators which work by electrostatic actuation, play an important role in MEMS. Compared with other types of microactuators, these microactuators are the more common and easy to use and it’s because of the fact that they generate lower force and consume relatively no electrical power. Low power applications are ideal candidates for electrostatic actuation because electrostatic force is generated by charge distribution not current fellow. Electrostatic parallel plate microactuators have many applications such as pressure sensors, accelerometers or comb-drive actuators, RF communication components, transmission line switches, reflective diffraction grating, laser cavities, stepper positioners, microrelays, micro shutters, optical routers, tunable capacitors, wavelength division multiplexing (WDM) filters, tunable LED’s and tuned laser. Electrostatic parallel plate microactuators are normally driven by DC voltage source scheme which is called static open-loop voltage control scheme. A major problem in this control strategy is that the voltage source causes a positive feedback in the electrostatic actuation. There is a well-known instability, inherent in the use of electrostatically actuated MEMS device called “snap-through” or “Pull-In”. “Pull-In” instability comes from positive feedback which causes the actuator top plate position becomes unstable and collapses at a distance of two-thirds of the zero- bias capacitive gap and it snaps the bottom plate. This prevents application of open loop voltage control scheme for devices that require an analog control of stable position within the entire gap.
DOI: 10.32657/10356/19275
Fulltext Permission: open
Fulltext Availability: With Fulltext
Appears in Collections:EEE Theses

Files in This Item:
File Description SizeFormat 
NikapanahMohammadHossein2009.pdfReport2.42 MBAdobe PDFThumbnail

Page view(s) 50

Updated on Oct 19, 2021

Download(s) 20

Updated on Oct 19, 2021

Google ScholarTM




Items in DR-NTU are protected by copyright, with all rights reserved, unless otherwise indicated.