Please use this identifier to cite or link to this item:
Title: Analysis and design of networked control systems
Authors: Saba Salehi
Keywords: DRNTU::Engineering::Electrical and electronic engineering::Control and instrumentation::Control engineering
Issue Date: 2009
Source: Salehi, S. (2009). Analysis and design of networked control systems. Master’s thesis, Nanyang Technological University, Singapore.
Abstract: In Networked Control Systems (NCSs), the communication between different components, is established through a shared digital network. This kind of communication, results in problems such as network induced transmission delays, packet losses, bandwidth limitations, multiple packet transmission, etc., which may affect the performance of the system or even lead to instability. Therefore, in designing controller for such systems these unfavorable effects should be taken into consideration. In this thesis, the focus is on control over networked systems with time delays or packet dropouts. Our goal is to first model NCSs with delays and packet dropouts, develop tools for stability analysis and control synthesis, and then validate the results through numerical examples and simulations and/or practical systems implementation. First, NCSs with two separate uncertain time varying delays in sensor and controller channels are investigated. Uncertainties of the networked control system will be characterized by polytopic uncertain parameters using Jordan canonical form. Markov jump linear systems are then applied to model the time delay of the sensor channel. Control synthesis of the system is considered by using a Lyapunov-Krasovskii approach, and a mode-dependent static output feedback controller is designed which changes for each different subinterval of delays. The results are given in the form of Nanyang Technological University vii Bilinear Matrix Inequalities (BMIs) which can be solved using methods and algorithms available in the literature. Subsequently, through some condition on output matrix, Linear Matrix Inequalities (LMIs) are derived for static output feedback controller. Further extensions for state feedback and dynamic output feedback controllers design are presented as well.
DOI: 10.32657/10356/19506
Fulltext Permission: open
Fulltext Availability: With Fulltext
Appears in Collections:EEE Theses

Files in This Item:
File Description SizeFormat 
SalehiSaba2009.pdfReport1.51 MBAdobe PDFThumbnail

Page view(s) 50

Updated on May 12, 2021

Download(s) 10

Updated on May 12, 2021

Google ScholarTM




Items in DR-NTU are protected by copyright, with all rights reserved, unless otherwise indicated.