Please use this identifier to cite or link to this item:
Title: Application of neural network techniques to fault diagnosis of a heat exchanger system
Authors: Woon, Kok Meng.
Keywords: DRNTU::Engineering::Electrical and electronic engineering::Computer hardware, software and systems
Issue Date: 1996
Abstract: Artificial neural networks, by their superior pattern-recognition ability, are well-suited for developing intelligent diagnostic tools for complex processes such as process plant operation. Fault diagnosis in a cross-flow tubular heat exchanger system is carried out by using three different paradigms - the Backpropagation (BP) network, the Recurrent Cascade-Correlation (RCC) network and the Self-Organising Map (SOM). The study focusses on two different fault scenarios which are simulated for the heat exchanger plant. The first deals with distinct fault states caused by equipment failure within the system whilst the other deals with fouling in the heat exchanger tubes. Training and performance results obtained from a comparative study using the three different networks are presented and practical issues concerning their role and implementation are discussed.
Fulltext Permission: restricted
Fulltext Availability: With Fulltext
Appears in Collections:MAE Theses

Files in This Item:
File Description SizeFormat 
  Restricted Access
16.17 MBAdobe PDFView/Open

Page view(s) 50

Updated on Nov 29, 2020

Download(s) 50

Updated on Nov 29, 2020

Google ScholarTM


Items in DR-NTU are protected by copyright, with all rights reserved, unless otherwise indicated.