Please use this identifier to cite or link to this item: https://hdl.handle.net/10356/20477
Full metadata record
DC FieldValueLanguage
dc.contributor.authorYeo, Hwee Tiong.en_US
dc.date.accessioned2009-12-15T03:04:43Z-
dc.date.available2009-12-15T03:04:43Z-
dc.date.copyright1997en_US
dc.date.issued1997-
dc.identifier.urihttp://hdl.handle.net/10356/20477-
dc.description.abstractWhile it is a well acknowledged fact that abstracting can be more comprehensive and take into consideration the context in which the article is written, it is much more tedious than automated extraction in terms of time and effort and is subject to bias, fatigue, uniform approach, subjectivity etc.en_US
dc.format.extent150 p.-
dc.language.isoen-
dc.rightsNANYANG TECHNOLOGICAL UNIVERSITYen_US
dc.subjectDRNTU::Engineering::Computer science and engineering::Information systems::Information systems applications-
dc.titleA comparative study of machine generated extracts and human generated extractsen_US
dc.typeThesisen_US
dc.contributor.supervisorHepworth, Marken_US
dc.contributor.schoolSchool of Applied Scienceen_US
dc.description.degreeMaster of Science (Information Studies)en_US
item.fulltextWith Fulltext-
item.grantfulltextrestricted-
Appears in Collections:SAS Theses
Files in This Item:
File Description SizeFormat 
SAS_THESES_56.pdf
  Restricted Access
15.69 MBAdobe PDFView/Open

Google ScholarTM

Check

Items in DR-NTU are protected by copyright, with all rights reserved, unless otherwise indicated.