Please use this identifier to cite or link to this item:
Title: Acquisition and analysis of snore signals for diagnosis of obstructive sleep apnea
Authors: Ng, Andrew Keong
Keywords: DRNTU::Engineering::Electrical and electronic engineering::Control and instrumentation::Medical electronics
Issue Date: 2010
Source: Ng, A. K. (2010). Acquisition and analysis of snore signals for diagnosis of obstructive sleep apnea. Doctoral thesis, Nanyang Technological University, Singapore.
Abstract: Obstructive sleep apnea (OSA) is a sleep-related breathing disorder that is common worldwide and potentially life-threatening; however, many affected individuals remain undiagnosed and untreated. This research aims to innovate on a simple, cost-saving, and reliable approach to diagnose OSA via the acquisition and analysis of snore signals, with an intention to mass screen for OSA. This thesis attempts to achieve the research aim through: (1) the implementation of a robust and user-friendly acquisition system for snore signals, along with recommendations for measurement standards; (2) the development of an advanced wavelet-driven preprocessing system that efficiently integrates both snore signal enhancement and snore activity detection; (3) the identification of effective snore-based OSA diagnostic markers, including formant frequencies (82.5–100% sensitivity, 82.0–95.0% specificity), wavelet bicoherence peaks (82.5–100% sensitivity, 83.3–100% specificity), and psychoacoustic metrics (72.0–78.0% sensitivity, 91.2–92.0% specificity), which accurately classify apneic and benign snores in same- and both-gender patient groups (p-value < 0.0001); (4) the formulation of regression models that are indicative of OSA severity; (5) the investigation of physiological-anatomical-acoustical relationships of snores via source-filter modeling; and (6) the successful generation of natural-sounding synthetic snores using a novel snore source flow model.
DOI: 10.32657/10356/20868
Fulltext Permission: open
Fulltext Availability: With Fulltext
Appears in Collections:EEE Theses

Files in This Item:
File Description SizeFormat 
NgAndrewKeong2010.pdfReport3.3 MBAdobe PDFThumbnail

Page view(s) 10

Updated on Aug 2, 2021

Download(s) 20

Updated on Aug 2, 2021

Google ScholarTM




Items in DR-NTU are protected by copyright, with all rights reserved, unless otherwise indicated.