Please use this identifier to cite or link to this item: https://hdl.handle.net/10356/2623
Full metadata record
DC FieldValueLanguage
dc.contributor.authorDo, Tien Dungen
dc.date.accessioned2008-09-17T09:06:32Zen
dc.date.available2008-09-17T09:06:32Zen
dc.date.copyright2007en
dc.date.issued2007en
dc.identifier.citationDo, T. D. (2007). Effective techniques for association rule mining and associative classification. Doctoral thesis, Nanyang Technological University, Singapore.en
dc.identifier.urihttps://hdl.handle.net/10356/2623en
dc.description.abstractThis research aims to develop effective techniques for enhancing association rule mining and associative classification. In particular, for association rule mining, we investigate new techniques for measure and constraint for association rules. For associative classification, we investigate new techniques for discovering association rules effectively for classification, especially from large datasets.en
dc.rightsNanyang Technological Universityen
dc.subjectDRNTU::Engineering::Computer science and engineering::Computing methodologies::Artificial intelligenceen
dc.titleEffective techniques for association rule mining and associative classificationen
dc.typeThesisen
dc.contributor.supervisorHui Siu Cheungen
dc.contributor.schoolSchool of Computer Engineeringen
dc.description.degreeDOCTOR OF PHILOSOPHY(SCE)en
dc.identifier.doi10.32657/10356/2623en
item.grantfulltextopen-
item.fulltextWith Fulltext-
Appears in Collections:SCSE Theses
Files in This Item:
File Description SizeFormat 
SCE-THESES_50.pdf2.01 MBAdobe PDFThumbnail
View/Open

Page view(s) 50

588
Updated on Jul 22, 2024

Download(s) 5

512
Updated on Jul 22, 2024

Google ScholarTM

Check

Altmetric


Plumx

Items in DR-NTU are protected by copyright, with all rights reserved, unless otherwise indicated.