Please use this identifier to cite or link to this item:
Title: Computer animation based on mass-spring models
Authors: Goh, Albert Lian Lai.
Keywords: DRNTU::Engineering::Computer science and engineering::Computing methodologies::Computer graphics
DRNTU::Engineering::Computer science and engineering::Computer systems organization::Special-purpose and application-based systems
Issue Date: 2000
Abstract: When performed with conventional methods such as keyframing, computer animation of soft and highly flexible body is often a difficult task to accomplish even for skillful ani-mators. Hence, the role of mathematical models is significant in this area. The goal of this project is to develop a mathematical and computational framework for generating realistic and fascinating motions of soft or highly flexible bodies with emphasis on animal locomotions. In the proposed framework, dynamic simulation and control paradigm are employed to animate and control the movements of flexible creatures represented by mass-spring model. Motor-controllers serve as the locomotory engine for executing the desired gait patterns while progressional forces such as frictional forces and hydrodynamic forces develop the spatial trajectory of the motion. The core functionality encompasses the rout-ing of control points, homing of mobile target, speed variation, accomplishment of timing specifications and gait transition. The careful formulation of the controller functions, together with the incorporation of a signal shifting mechanism, readily achieves realistic animations of the represented animals. The proposed system is designed to be a generic mass-spring locomotion system with representative areas of mass-spring animations such as motions of snake, worm and fish being implemented as examples. In particular, all the four biologically defined microscopic gaits of a snake and the three classes of cau-dal motions of a fish have been fully implemented. To demonstrate its versatility, cloth animation has also been implemented with interesting results.
Rights: Nanyang Technological University
Fulltext Permission: restricted
Fulltext Availability: With Fulltext
Appears in Collections:SCSE Theses

Files in This Item:
File Description SizeFormat 
  Restricted Access
Main report17.95 MBAdobe PDFView/Open

Google ScholarTM


Items in DR-NTU are protected by copyright, with all rights reserved, unless otherwise indicated.