Please use this identifier to cite or link to this item: https://hdl.handle.net/10356/3778
Full metadata record
DC FieldValueLanguage
dc.contributor.authorWu, Shi Qian.en_US
dc.date.accessioned2008-09-17T09:37:22Z-
dc.date.available2008-09-17T09:37:22Z-
dc.date.copyright2001en_US
dc.date.issued2001-
dc.identifier.urihttp://hdl.handle.net/10356/3778-
dc.description.abstractThe objective of this thesis is to develop FNN's by various techniques so that these systems can be used for on-line identification and control processes in dealing with nonlinear, time-varying, ill-defined systems.en_US
dc.rightsNanyang Technological Universityen_US
dc.subjectDRNTU::Engineering::Electrical and electronic engineering::Computer hardware, software and systems-
dc.titleDynamic fuzzy neural networks : principles, algorithms and applicationsen_US
dc.typeThesisen_US
dc.contributor.supervisorEr, Meng Jooen_US
dc.contributor.schoolSchool of Electrical and Electronic Engineeringen_US
dc.description.degreeDoctor of Philosophy (EEE)en_US
item.grantfulltextrestricted-
item.fulltextWith Fulltext-
Appears in Collections:EEE Theses
Files in This Item:
File Description SizeFormat 
EEE-THESES_1606.pdf
  Restricted Access
2.9 MBAdobe PDFView/Open

Google ScholarTM

Check

Items in DR-NTU are protected by copyright, with all rights reserved, unless otherwise indicated.