Please use this identifier to cite or link to this item:
Title: Vibrational energy harvesting using smart materials
Authors: Ang, Sabrina Shu Qin
Keywords: DRNTU::Engineering::Civil engineering::Structures and design
Issue Date: 2010
Abstract: Vibration-based energy harvesting has rapidly advanced through the years, creating greater possibility of continuous and battery free power supply using the wireless electronics. In the recent years, smart materials have established their useful applications in harvesting of vibrational energy in the form of sensors and actuators. This is due to their intrusive nature and unique electro- mechanical coupling effect. To investigate this form of energy harvesting, the conventional cantilever beam configuration is involved, with smart materials bonded to the host structure. A comparison between three types of smart materials to attain the best harvesting material with the most power output will be explored, namely macro-fibre composites transducers (MFC), DuraAct A11 and A12. The scope of work is differentiated into structural and electrical aspects. In this study, the electrical aspects featuring harvesting circuits with storage capacitors will be emphasized. The first resonance frequency of the three smart materials will be experimentally derived through a circuit consisting of a 30mJ LED bulb, controlled by a control switch management module EH300A that limits the charging range from 1.8V to 3.6V. The charging time and total power harnessed from the three materials will be compared. To further enhance the harvesting system, geometric beam configurations with variations in the proof masses will test on their voltage output and charging efficiencies. Subsequently, using the optimal energy harvesting material in its best structural configuration option attained, a guideline for selection of various storage capacitors for different application use can be derived. A practical application of energy harvesting technology will be then be explored.
Rights: Nanyang Technological University
Fulltext Permission: restricted
Fulltext Availability: With Fulltext
Appears in Collections:CEE Student Reports (FYP/IA/PA/PI)

Files in This Item:
File Description SizeFormat 
  Restricted Access
1.88 MBAdobe PDFView/Open

Page view(s) 50

Updated on Jul 26, 2021

Download(s) 50

Updated on Jul 26, 2021

Google ScholarTM


Items in DR-NTU are protected by copyright, with all rights reserved, unless otherwise indicated.