Please use this identifier to cite or link to this item:
https://hdl.handle.net/10356/38704
Title: | Synthesis of lead selenide (PbSe) quantum dots for photovoltaic applications | Authors: | Yang, Shuai | Keywords: | DRNTU::Engineering::Materials::Nanostructured materials | Issue Date: | 2010 | Abstract: | Lead Selenide (PbSe) quantum dots were synthesized by a room – temperature microemulsion route. By varying the water to surfactant ratio, the particle size of the synthesized PbSe quantum dots could be adjusted while Energy Dispersive X-ray Spectroscopy (EDX) analysis showed the elemental composition of Pb and Se remained at close to 1 : 1. PbSeO3 phase was present in X-ray Diffraction (XRD) patterns that suggested the PbSe had low stability due to lack of capping agent. Transmission Electron Microscopy (TEM) results confirmed that the particle size increased with increasing water to surfactant ratio, and UV-vis NIR Absorption Spectra of the PbSe quantum dots showed a red shift also with increasing water to surfactant ratio, the corresponding band gap was more than 1eV, which was larger than that of bulk PbSe. | URI: | http://hdl.handle.net/10356/38704 | Schools: | School of Materials Science and Engineering | Rights: | Nanyang Technological University | Fulltext Permission: | restricted | Fulltext Availability: | With Fulltext |
Appears in Collections: | MSE Student Reports (FYP/IA/PA/PI) |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
FYP_Yang_Shuai.pdf Restricted Access | 1.45 MB | Adobe PDF | View/Open |
Page view(s) 50
638
Updated on May 7, 2025
Download(s)
10
Updated on May 7, 2025
Google ScholarTM
Check
Items in DR-NTU are protected by copyright, with all rights reserved, unless otherwise indicated.