Please use this identifier to cite or link to this item: https://hdl.handle.net/10356/38895
Title: Fabrication of thin film composite forward osmosis hollow fiber membranes
Authors: Fang, Wangxi
Keywords: DRNTU::Engineering::Environmental engineering::Water treatment
Issue Date: 2010
Abstract: Forward osmosis (FO) has received intensive studies recently for a range of potential applications such as wastewater treatment, water purification and seawater desalination. One of the major challenges to be overcome is the lack of an optimized FO membrane that can produce a high water flux comparable to commercial reverse osmosis (RO) membranes. The objective of the project is to fabricate thin film composite (TFC) hollow fiber membranes which are suitable for FO applications. Specifically, the ultra-filtration hollow fiber substrate was spun using polyethersulfone (PES) by phase inversion method. The substrate is single-skinned on the lumen side. The thin film active layer was formed on the inner surface of the hollow fiber substrate through interfacial polymerization (IP). The two monomers of the polymerization used are M-phenylene-diamine (MPD) and M-phenylene-diamine (TMC). Several IP experimental variables including involvement of additives, MPD concentration in the aqueous solution, polymerization reaction time, etc. were optimized. Hollow fiber substrates and FO membranes were characterized using different analytical methods including scanning electron microscope observation, molecular weight cut-off test, porosity measurement and mechanical strength test, etc. Water and solute permeability of the FO membrane were also measured in an RO setup. It was found that two different chemicals can successfully work together as the additives of aqueous solution to achieve a better performing membrane than applying each additive separately. It was also deduced that, within a feasible range, higher MPD concentration in the aqueous solution is considered more desirable in FO hollow fiber membrane fabrication. The water flux achieved during lab-scale FO test for two membrane orientations using different draw solution concentrations were benchmarked against commercial FO and nanofiltration (NF) membranes. For the fabricated membranes with optimized preparation conditions, water flux can reach 42.6 L/h•m2 using 0.5M NaCl as draw solution and deionized water as feed for the active layer facing draw solution orientation. The performance of the in-house made FO hollow fiber is believed to be superior to all FO membranes reported in the open literature.
URI: http://hdl.handle.net/10356/38895
Rights: Nanyang Technological University
Fulltext Permission: restricted
Fulltext Availability: With Fulltext
Appears in Collections:CEE Student Reports (FYP/IA/PA/PI)

Files in This Item:
File Description SizeFormat 
C_EN27_10.pdf
  Restricted Access
1.45 MBAdobe PDFView/Open

Page view(s) 20

342
checked on Oct 21, 2020

Download(s) 20

17
checked on Oct 21, 2020

Google ScholarTM

Check

Items in DR-NTU are protected by copyright, with all rights reserved, unless otherwise indicated.