Please use this identifier to cite or link to this item:
https://hdl.handle.net/10356/38990
Title: | The application of artificial neural network for optimization of MP-CSMA/CD protocol | Authors: | Jiao, Zhi Hua | Keywords: | DRNTU::Engineering::Electrical and electronic engineering::Computer hardware, software and systems | Issue Date: | 1997 | Abstract: | In heavy traffic, the Carrier Sense Multiple Access with Collision Detection (CSMA/CD) protocol suffers from numerous packets collisions resulting in a degradation of perfor-mance. A modified p—persistent CSMA/CD protocol(MP-CSMA/CD) has been proposed earlier which aims to maximize throughput performance. In this project, an artificial Neu-ral Network(NN) is utilized to optimize the MP-CSMA/CD protocol. The effects of neural network configurations and training parameters including learning rate, momentum and hidden neurons on neural network training are investigated. The simulation results show that the general throughput performance of neural network controlled MP-CSMA/CD local area network is better than that of CSMA/CD. In addition, the performance of the MP-CSMA/CD(NN) protocol under different load distributions (Even or Uneven load) is investigated. Some distribution functions are used to distribute the traffic along the bus to simulate actual traffic in the LAN. To ascertain the feasible implementation of this protocol, the effects of packet propagation delay are examined. Packet propagation delays may result in a drift in the probability of transmission due to the difference in sampled throughputs at different stations. Our simulations show that the trained neural network is insensitive to this noise in the sampled throughput and is able to steer the probability p in even or uneven load. | URI: | http://hdl.handle.net/10356/38990 | Schools: | School of Electrical and Electronic Engineering | Rights: | Nanyang Technological University | Fulltext Permission: | restricted | Fulltext Availability: | With Fulltext |
Appears in Collections: | EEE Theses |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
JiaoZhiHua1997.pdf Restricted Access | Main report | 10.92 MB | Adobe PDF | View/Open |
Page view(s) 50
479
Updated on Mar 17, 2025
Download(s)
2
Updated on Mar 17, 2025
Google ScholarTM
Check
Items in DR-NTU are protected by copyright, with all rights reserved, unless otherwise indicated.