Please use this identifier to cite or link to this item: https://hdl.handle.net/10356/39774
Title: Wireless structural health monitoring system for cranes
Authors: Ng, Gerard-Christian Zhi Li.
Keywords: DRNTU::Engineering::Civil engineering::Structures and design
Issue Date: 2010
Abstract: This proposed project aims to design a wireless real time structural health monitoring (SHM) system for tower crane structures that dominate construction sites to assure their safety. This research will focus on the stability of crane structures when subjected to operational and wind loadings. It will also examine the effects of structural damage to the crane’s global behaviour. The crane structure will be linked and monitored by vibrating wire strain gauges and Linear Variable Displacement Transducers (LVDT). All changes in stress or any other static parameters of selected parts of the crane structure can be detected immediately. Thus catastrophic failure of the structure can be averted. The rationale behind this project is that, by installing wireless sensors to a structure, critical real-time data of the structure under static and in future dynamic loads are collected and transmitted from the site to the monitoring station. Hard to reach places that do not accommodate lengthy wires can now be reached with the implementation of wireless sensors. The monitoring station will collect all data and run an analysis. Research will place emphasis on the static loads that the structure experiences. The data recorded will be based on an existing port crane located within the compounds of the Sembawang Shipyard. The data collected will be matched with numerical models to determine the viability of this project. The experiment involves numerical modelling of the structure to identify critical sections, a week long live testing on a port tower crane within the Sembawang Shipyard and correlating them with 3-dimensional models in ANSYS 11. The results will be matched and extrapolated to determine the failure-inducing load. The results of this research provide valuable reference for further exploration of the idea of SHM systems within the construction industry, which has a wide market currently from the growing demands in safety while maintaining speed and quantity required by both developed and developing nations.
URI: http://hdl.handle.net/10356/39774
Rights: Nanyang Technological University
Fulltext Permission: restricted
Fulltext Availability: With Fulltext
Appears in Collections:CEE Student Reports (FYP/IA/PA/PI)

Files in This Item:
File Description SizeFormat 
Ng Zhili Gerard-Christian.pdf
  Restricted Access
2.79 MBAdobe PDFView/Open

Page view(s) 1

572
checked on Oct 26, 2020

Download(s) 1

7
checked on Oct 26, 2020

Google ScholarTM

Check

Items in DR-NTU are protected by copyright, with all rights reserved, unless otherwise indicated.