Please use this identifier to cite or link to this item: https://hdl.handle.net/10356/41276
Title: Complementary learning fuzzy neural network
Authors: Tan, Tuan Zea
Keywords: DRNTU::Engineering::Computer science and engineering::Computing methodologies::Artificial intelligence
Issue Date: 2008
Source: Tan, T. Z. (2008). Complementary learning fuzzy neural network. Doctoral thesis, Nanyang Technological University, Singapore.
Abstract: Computational intelligence (CI) is gaining more attention as its applications in various areas grow. Soft computing is one of the popular CI facets because of its ability to handle imprecision and uncertainty. Artificial Neural Network (ANN), neuro-juzzy system,juzzy expert system, and statistical method are the prominent tools within this discipline. However, these systems infer mainly from the class of interest (positive class). The information about the differences among classes are not fully utilized. Some systems, on the other hand, do not consider the class information at all. Although these systems perform well, their performance could be further enhanced if the contribution from' negative class is taken into account. Moreover, constructing knowledge based on single class alone may cause the system to under-perform when the data is imbalanced. Viewing from the other end, most of these systems focus on boosting the accuracy, but disregard the psychological needs of user. They lack the reasoning, inference, and validation processes that user can identify with. CI system based on ANN or statistical method provides no means of understanding the system, while some expert system requires manual construction of knowledge. Furthermore, most of them are independent of biological or psychological principle, which hinder the user acceptance and trust towards the system. The debut of high-dimensional and ultra-huge databases exacerbates the situation.
URI: https://hdl.handle.net/10356/41276
DOI: 10.32657/10356/41276
Fulltext Permission: open
Fulltext Availability: With Fulltext
Appears in Collections:SCSE Theses

Files in This Item:
File Description SizeFormat 
TanTuanZea08.pdf9.92 MBAdobe PDFThumbnail
View/Open

Google ScholarTM

Check

Altmetric


Plumx

Items in DR-NTU are protected by copyright, with all rights reserved, unless otherwise indicated.