Please use this identifier to cite or link to this item: https://hdl.handle.net/10356/41532
Title: Nanofabrication of a BioMEMS device for drug delivery
Authors: Ramasamy Arunachalam
Keywords: DRNTU::Engineering::Nanotechnology
Issue Date: 2008
Abstract: In the recent past, fast paced research in drug delivery is phenomenal in the areas of routes of administration, nature of the drug, biological barrier and drug delivery systems. Drug delivery systems' sensing and actuating with the help of a bio responsive mechanism is better than any other mechanisms because of its high resolution sensing and best control over the delivery rate of the drug. Polymeric materials are commonly used as drug delivery membranes because of its good biodegradability and delivery rate control and easiness in processing. On the other hand, the silicon materials are also used for drug delivery for immunoisolating the drugs from the antibodies and to enhance long term storage. Both these categories have some disadvantages, like the polymers are very weak and tend to toxicate the whole system whereas, the silicon made drug delivery systems have very poor controllability and are less biocompatible comparatively. To overcome the difficulties in both these types, a suitable hybrid drug delivery device was proposed that has got Silicon capsule for storing and immunoisolating the drug, over which a hydrogel polymer is coated to have a very precise control over the delivery rate. For immunoisolation and drug storage, a silicon membrane with a reservoir is fabricated with the help of Micro Electro Mechanical Systems (MEMS) fabrication process in this project.
URI: http://hdl.handle.net/10356/41532
Schools: School of Mechanical and Aerospace Engineering 
Fulltext Permission: restricted
Fulltext Availability: With Fulltext
Appears in Collections:MAE Theses

Files in This Item:
File Description SizeFormat 
RamasamyArunachalam08.pdf
  Restricted Access
8.2 MBAdobe PDFView/Open

Page view(s) 50

643
Updated on Mar 16, 2025

Download(s)

3
Updated on Mar 16, 2025

Google ScholarTM

Check

Items in DR-NTU are protected by copyright, with all rights reserved, unless otherwise indicated.