Please use this identifier to cite or link to this item: https://hdl.handle.net/10356/42264
Title: Enzymatic and protein crystallization and structure study
Authors: Ching, Chi Bun
Keywords: DRNTU::Engineering::Chemical engineering::Biochemical engineering
Issue Date: 2008
Abstract: In this work, we aimed to develop practical techniques and theoretical basis for protein crystallization to improve the success rate to obtain protein crystals with good quality. The effects of ionic strength, liquid-liquid phase separation and different chemically modified solid surfaces/substrates on the nucleation of protein crystals were investigated. Micro-batch crystallization experiments were conducted to study the mechanism of nucleation of protein crystals. An optical microscope with a heating/cooling stage was applied to determine the liquid-liquid co-existence curve, measure the initial nucleation rate and observe the liquid-liquid phase separation and subsequent crystallization process. A model was proposed to correlate and predict the cloud point temperature as a function of lysozyme concentration at fixed salt concentrations. In this model, the Random Phase Approximation, in conjunction with a square-well potential, was modified by assuming the square-well depth to be temperature dependent. The modified model was found to predict the liquid-liquid co-existence curve very well. Micro-batch crystallization experiments were also conducted on the microscope glass slides that were treated with poly-L-glutamic acid (PLG), poly(2-hydroxyethyl methacrylate) (P2HEMA), poly(methyl methacrylate) (PMMA), poly(4-vinyl pyridine) (P4VP) and (3-aminopropyl)triethoxysilane (APTES). The induction time of heterogeneous nucleation was measured. The surface topography and roughness were characterized by atomic force microscope (AFM). Contact angles for crystallization solution on the investigated surfaces were measured by contact angle meter. Theoretical analysis and experimental results show that, the surface roughness and topography can remarkably affect the free energy required for the formation of critical nucleus. Furthermore, hydrophobicity, electrostatic and antibacterial property of surface also greatly affected protein nucleation.
URI: http://hdl.handle.net/10356/42264
Fulltext Permission: restricted
Fulltext Availability: With Fulltext
Appears in Collections:SCBE Research Reports (Staff & Graduate Students)

Files in This Item:
File Description SizeFormat 
ChingChiBun08_b.pdf
  Restricted Access
1.57 MBAdobe PDFView/Open

Google ScholarTM

Check

Items in DR-NTU are protected by copyright, with all rights reserved, unless otherwise indicated.