Please use this identifier to cite or link to this item: https://hdl.handle.net/10356/4276
Full metadata record
DC FieldValueLanguage
dc.contributor.authorGao, Yang.en_US
dc.date.accessioned2008-09-17T09:48:10Z-
dc.date.available2008-09-17T09:48:10Z-
dc.date.copyright2003en_US
dc.date.issued2003-
dc.identifier.urihttp://hdl.handle.net/10356/4276-
dc.description.abstractThis thesis proposes a superior adaptive fuzzy neural network identification and control scheme for MIMO nonlinear dynamic systems in general, with a view of dealing with high complexity, uncertainties and imprecision in this class of systems. In literature, fuzzy logic and neural networks have been greatly adopted in modeling and control.en_US
dc.rightsNanyang Technological Universityen_US
dc.subjectDRNTU::Engineering::Electrical and electronic engineering::Control and instrumentation-
dc.titleAdaptive identification and control of nonlinear systems using generalized fuzzy neural networken_US
dc.typeThesisen_US
dc.contributor.supervisorEr, Meng Jooen_US
dc.contributor.schoolSchool of Electrical and Electronic Engineeringen_US
dc.description.degreeDoctor of Philosophy (EEE)en_US
item.fulltextWith Fulltext-
item.grantfulltextrestricted-
Appears in Collections:EEE Theses
Files in This Item:
File Description SizeFormat 
EEE-THESES_327.pdf
  Restricted Access
12.14 MBAdobe PDFView/Open

Page view(s) 20

262
checked on Oct 24, 2020

Download(s) 20

9
checked on Oct 24, 2020

Google ScholarTM

Check

Items in DR-NTU are protected by copyright, with all rights reserved, unless otherwise indicated.