Please use this identifier to cite or link to this item:
https://hdl.handle.net/10356/42811
Title: | Implementation of sensing of pathological tremor using surface electromyography and accelerometer for real-time attenuation in LabView | Authors: | Agus Herryanto | Keywords: | DRNTU::Engineering::Mechanical engineering::Assistive technology | Issue Date: | 2010 | Abstract: | Tremor is involuntary rhythmic or semi-rhythmic oscillation of a body part resulting from alternating or simultaneous contractions of antagonistic muscle groups. It is the most common cause of movement disorders. As the proportion of aging people is expected to increase significantly in the future, both social and economic impacts of tremor are expected to increase as well. Therefore, a proper tremor suppression method is ultimately needed. Currently, there are two main tremor suppression methods, either with medication and surgery or with assistive technology. A work by Widjaja et al. (2009) was dedicated toward the assistive technology for tremor suppression. To sense the tremor, Widjaja’s work used Surface Electromyography (sEMG) and Accelerometer (ACC) and to attenuate the tremor, a Functional Electrical Stimulation (FES) was proposed. Widjaja et al. (2009) have successfully implemented a real-time tremor compensation system in C language, which is expected to be deployed in an assistive technology. As working in real-time tremor compensation system is really technically challenging, a programming language with better user interface and refactoring capability is preferred. | URI: | http://hdl.handle.net/10356/42811 | Schools: | School of Mechanical and Aerospace Engineering | Research Centres: | Robotics Research Centre | Rights: | Nanyang Technological University | Fulltext Permission: | restricted | Fulltext Availability: | With Fulltext |
Appears in Collections: | MAE Student Reports (FYP/IA/PA/PI) |
Page view(s) 50
625
Updated on Mar 21, 2025
Download(s)
9
Updated on Mar 21, 2025
Google ScholarTM
Check
Items in DR-NTU are protected by copyright, with all rights reserved, unless otherwise indicated.