Please use this identifier to cite or link to this item:
Title: Chromatography refolding of recombinant alpha-fetoprotein for high refolding productivity and intensified bioprocessing
Authors: Chen, Yu
Keywords: DRNTU::Engineering::Chemical engineering::Biotechnological production
Issue Date: 2011
Source: Chen, Y. (2011). Chromatography refolding of recombinant alpha-fetoprotein for high refolding productivity and intensified bioprocessing. Doctoral thesis, Nanyang Technological University, Singapore.
Abstract: Alpha-fetoprotein (AFP) is a commercially valuable biopharmaceutical candidate for autoimmune indications. Transgenically-derived recombinant AFP has recently successfully completed a Phase Two clinical trial study for rheumatoid arthritis indications at Merrimack Pharmaceuticals (Cambridge, MA, USA). The launch of this protein on market shelves in the future will subsequently demand cheaper second-generation product when product patent expires, thus necessitating new processes that can reduce product cost. The production of AFP as inclusion bodies (IBs) in Escherichia coli (E. coli) is advantageous for process-scale commercial manufacture due to speed, simplicity and cost reasons but conversion of the inactive protein aggregate into biologically active protein requires an efficient refolding step. The use of dilution refolding in previously reported recombinant human AFP (rhAFP) laboratory processes has resulted in low refolding yields, which negatively impacts the overall process yield and productivity. A superior refolding and bioprocessing route is clearly needed to facilitate efficient and rapid product delivery to market, if a commercial process for rhAFP is to be possible. In this thesis, chromatography refolding was researched to address the poor refolding performance or rhAFP in previous ‘dilution refolding’-based rhAFP processes.
DOI: 10.32657/10356/43987
Fulltext Permission: open
Fulltext Availability: With Fulltext
Appears in Collections:SCBE Theses

Files in This Item:
File Description SizeFormat 
TscbeG0600303H.pdf3.56 MBAdobe PDFThumbnail

Page view(s) 50

Updated on May 10, 2021

Download(s) 20

Updated on May 10, 2021

Google ScholarTM




Items in DR-NTU are protected by copyright, with all rights reserved, unless otherwise indicated.