Please use this identifier to cite or link to this item:
https://hdl.handle.net/10356/44275
Title: | Actinomycin D induces non-random apoptotic DNA breakpoints in human leukemia HL-60 cells. | Authors: | Lin, Lifang. | Keywords: | DRNTU::Science::Biological sciences::Molecular biology | Issue Date: | 2011 | Abstract: | Apoptosis is a programmed cell death that is induced by prolonged cellular stress. During apoptosis, caspase-activated DNase cleaves DNA at the internucleosomal regions to produce an “apoptotic ladder” that consists of multiples of 180-200bp. We postulate that these apoptotic DNA breakpoints are non-random and may be associated with cancer. Previously, our laboratory sequenced the 180-200bp band of the apoptotic ladder DNA of human leukemia HL-60 cells after treating them with actinomycin D for 19 hours. This study aims to validate these results using quantitative PCR at 13 sites near genes and to examine the differences between apopotic breakpoints of HL-60 cells after 4 hours and 19 hours of actinomycin D treatment. Our results showed that actinomycin D-induced apoptosis in HL-60 cells produced specific apoptotic DNA breakpoints, which was consistent with the previous sequencing studies. Some sites of cleavage were near to apoptosis-associated genes (e.g.BIM) and translocated-associated genes (e.g.CREB3L2). In addition, there was no significant difference in the apoptotic breakpoints between 4 hours and 19 hours of actinomycin D-treated HL-60 cells. The discovery of these sites near genes allows us to understand apoptosis in cancer cells better and may provide a platform for further research in cancer treatment. | URI: | http://hdl.handle.net/10356/44275 | Schools: | School of Biological Sciences | Organisations: | Duke-NUS Medical School | Rights: | Nanyang Technological University | Fulltext Permission: | restricted | Fulltext Availability: | With Fulltext |
Appears in Collections: | SBS Student Reports (FYP/IA/PA/PI) |
Page view(s) 20
729
Updated on May 7, 2025
Download(s)
19
Updated on May 7, 2025
Google ScholarTM
Check
Items in DR-NTU are protected by copyright, with all rights reserved, unless otherwise indicated.