Please use this identifier to cite or link to this item: https://hdl.handle.net/10356/44541
Title: Mechanical vibration isolation design for advanced clocking device and software design for environmental testing system
Authors: Neo, Ming Feng
Keywords: DRNTU::Engineering::Mechanical engineering
Issue Date: 2011
Abstract: With the development in the past decade, silicon Mircoelectromechanical Systems (MEMS) technology has reached a mature level. MEMS oscillators have been commercialized to emerge as a promising replacement for quartz crystals. They provide thinner and cheaper solution with easier integration for future electronics systems. As electronic systems miniaturize, oscillators are gradually exposed to environment with significant high frequency mechanical noise. This project focuses on the vibration isolation design for advanced clocking device in order to meet the mechanical vibration requirement. The design process is complemented by analytical solution and finite element analysis using ANSYS Workbench. Prototype of the design is fabricated with wire-cut electric discharge machining and experiments are conducted to match and verify the accuracy of both analytical and finite element analysis solutions. This project primarily studied on the effectiveness in vibration isolation of the design. MEMS oscillators‟ instability with temperature posed a challenge to the reliability of the timing device. This project also works on designing an Oscillator Environmental Testing System to acquire results of the performance of commercialized MEMS, crystal oscillators and oven-controlled crystal oscillators under temperature loadings. The result will be used as the performance benchmark for the design of advanced clocking device under temperature loading.
URI: http://hdl.handle.net/10356/44541
Schools: School of Mechanical and Aerospace Engineering 
Rights: Nanyang Technological University
Fulltext Permission: restricted
Fulltext Availability: With Fulltext
Appears in Collections:MAE Student Reports (FYP/IA/PA/PI)

Files in This Item:
File Description SizeFormat 
mA267.pdf
  Restricted Access
4.91 MBAdobe PDFView/Open

Page view(s)

421
Updated on Mar 16, 2025

Download(s)

12
Updated on Mar 16, 2025

Google ScholarTM

Check

Items in DR-NTU are protected by copyright, with all rights reserved, unless otherwise indicated.