Please use this identifier to cite or link to this item: https://hdl.handle.net/10356/4543
Full metadata record
DC FieldValueLanguage
dc.contributor.authorKyaw, Zin Min.en_US
dc.date.accessioned2008-09-17T09:53:51Z-
dc.date.available2008-09-17T09:53:51Z-
dc.date.copyright2003en_US
dc.date.issued2003-
dc.identifier.urihttp://hdl.handle.net/10356/4543-
dc.description.abstractThis report documents the underlining theories and neural network that lead to the development of handwritten digit recognition architecture that are capable of recognizing handwritten digit with recognition accuracy of up to 76%.en_US
dc.rightsNanyang Technological Universityen_US
dc.subjectDRNTU::Engineering::Electrical and electronic engineering::Computer hardware, software and systems-
dc.titleMulti-layer neural networks for handwritten digit recognitionen_US
dc.typeThesisen_US
dc.contributor.supervisorSaratchandran, Paramasivanen_US
dc.contributor.schoolSchool of Electrical and Electronic Engineeringen_US
dc.description.degreeMaster of Science (Computer Control and Automation)en_US
item.grantfulltextrestricted-
item.fulltextWith Fulltext-
Appears in Collections:EEE Theses
Files in This Item:
File Description SizeFormat 
EEE-THESES_567.pdf
  Restricted Access
1.11 MBAdobe PDFView/Open

Page view(s)

346
Updated on Aug 12, 2022

Download(s)

3
Updated on Aug 12, 2022

Google ScholarTM

Check

Items in DR-NTU are protected by copyright, with all rights reserved, unless otherwise indicated.