Please use this identifier to cite or link to this item:
Title: Measurements of cavity flow
Authors: Koh, Siong Hwee.
Keywords: DRNTU::Engineering::Mechanical engineering::Fluid mechanics
Issue Date: 2011
Abstract: Cavity flow is a phenomenon when a fluid encounters a cavity while travelling across aerodynamic surfaces. The result is an acoustic environment in the cavity which causes pressure oscillations and velocity variations. These phenomenon are frequently experienced in many present day applications such as sunroofs of cars, bomb and landing gears storage hatches of aircrafts. The effects of this phenomenon have important engineering implications and are of great practical interest to researchers, on both the acoustic feedback mechanism and the corresponding solutions to these problems on the industries. Investigation of the effects of cavity flow begins with the more fundamental two-dimensional flow. The methods used to analyze these effects include hot-wire anemometry, cavity floor pressure measurements and Particle Image Velocimetry measurements. The effects of varying aspect ratio (length to depth) on velocity and pressure distributions are being investigated.
Rights: Nanyang Technological University
Fulltext Permission: restricted
Fulltext Availability: With Fulltext
Appears in Collections:MAE Student Reports (FYP/IA/PA/PI)

Files in This Item:
File Description SizeFormat 
  Restricted Access
2.51 MBAdobe PDFView/Open

Page view(s) 50

checked on Oct 29, 2020

Download(s) 50

checked on Oct 29, 2020

Google ScholarTM


Items in DR-NTU are protected by copyright, with all rights reserved, unless otherwise indicated.