Please use this identifier to cite or link to this item: https://hdl.handle.net/10356/4582
Full metadata record
DC FieldValueLanguage
dc.contributor.authorLee, Teck Hock.en_US
dc.date.accessioned2008-09-17T09:54:43Z-
dc.date.available2008-09-17T09:54:43Z-
dc.date.copyright2001en_US
dc.date.issued2001-
dc.identifier.urihttp://hdl.handle.net/10356/4582-
dc.description.abstractIn this thesis, we investigated the use of features derived from snoring sounds as a method of simplying the diagnosis procedure and to discriminate between benign (non-pathological) and apenic (OSA-related) episodes of snoring.en_US
dc.rightsNanyang Technological Universityen_US
dc.subjectDRNTU::Engineering::Electrical and electronic engineering::Electronic systems::Signal processing-
dc.titleInstrumentation and signal processing for the detection of Obstructive Sleep Apneaen_US
dc.typeThesisen_US
dc.contributor.supervisorUdantha Ranjith Abeyratneen_US
dc.contributor.schoolSchool of Electrical and Electronic Engineeringen_US
dc.description.degreeMaster of Engineeringen_US
item.grantfulltextrestricted-
item.fulltextWith Fulltext-
Appears in Collections:EEE Theses
Files in This Item:
File Description SizeFormat 
EEE-THESES_601.pdf
  Restricted Access
4.01 MBAdobe PDFView/Open

Page view(s)

406
Updated on Jul 20, 2024

Download(s)

5
Updated on Jul 20, 2024

Google ScholarTM

Check

Items in DR-NTU are protected by copyright, with all rights reserved, unless otherwise indicated.