Please use this identifier to cite or link to this item: https://hdl.handle.net/10356/46045
Full metadata record
DC FieldValueLanguage
dc.contributor.authorMuhammad Qusyairi Mazlan.
dc.date.accessioned2011-06-28T04:47:25Z
dc.date.available2011-06-28T04:47:25Z
dc.date.copyright2011en_US
dc.date.issued2011
dc.identifier.urihttp://hdl.handle.net/10356/46045
dc.description.abstractHigh ordered titanium dioxide (TiO2) nanotube arrays are an important alternative photoanodes for dye-sensitised solar cells (DSSCs) due to fast electron transport, while its lower specific area leads to a lower conversion efficiency compared to the conventional nanocrystalline DSSCs. High-aspect-ratio TiO2 nanotubes with small diameter can provide a greater surface area for the dye loading, thus resulting in higher conversion efficiency of DSSCs. There are many anodizing parameters to affect the geometry of the nanotubes, such as electrolyte composition, voltage duration etc. Among these factors, applied potential is one of the most important parameters to determine the tube diameter and length. In this project, two low voltages (i.e. 15V and 25V) were applied for different anodizing times to produce TiO2 nanotubes with small diameter. In order to further increase tube growth rate (i.e. tube length), hybrid method (combined potentiostatic and galvanostatic anodization) with stirring at an initial voltage of 15V were investigated. The as-anodized TiO2 nanotubes were characterized by analysing its tube length and pore diameter. After which, the aspect-ratio of the nanotubes were calculated and compared to determine the best anodizing method which can produce the highest aspect ratio TiO2 nanotubes. Results show that the potentiostatic method at low voltage of 15V produced the smallest diameter of 42.14 ± 4.66 nm with uniformity but with short tube length of only 3.1 ± 0.16 μm after 20 hours. In comparison, hybrid anodic method with stirring produced the longest tube length but at the expense of larger pore diameters which are less uniform in the same time. In conclusion, the hybrid anodic method with stirring with an initial voltage of 15V produced the highest aspect-ratio TiO2 nanotubes of 112.19 after 10 hours of anodization.en_US
dc.format.extent90 p.en_US
dc.language.isoenen_US
dc.rightsNanyang Technological University
dc.subjectDRNTU::Engineering::Nanotechnologyen_US
dc.titleFabrication of high-aspect-ratio TiO2 nanotubes with small diameteren_US
dc.typeFinal Year Project (FYP)en_US
dc.contributor.supervisorSam Zhang Shanyongen_US
dc.contributor.schoolSchool of Mechanical and Aerospace Engineeringen_US
dc.description.degreeBachelor of Engineering (Mechanical Engineering)en_US
item.grantfulltextrestricted-
item.fulltextWith Fulltext-
Appears in Collections:MAE Student Reports (FYP/IA/PA/PI)
Files in This Item:
File Description SizeFormat 
M267.pdf
  Restricted Access
2.36 MBAdobe PDFView/Open

Page view(s) 50

427
Updated on Jul 22, 2024

Download(s)

12
Updated on Jul 22, 2024

Google ScholarTM

Check

Items in DR-NTU are protected by copyright, with all rights reserved, unless otherwise indicated.