Please use this identifier to cite or link to this item: https://hdl.handle.net/10356/46774
Title: Low-voltage low-power CMOS flip-flops
Authors: Phyu, Myint Wai.
Keywords: DRNTU::Engineering::Electrical and electronic engineering
Issue Date: 2009
Source: Phyu, M. W. (2009). Low-voltage low-power CMOS flip-flops. Doctoral thesis, Nanyang Technological University, Singapore.
Abstract: As the clock frequency scales, the pipeline depth increases and the number of logic gates per stage decreases. The System-on-Chip (SoC) designs will therefore integrate tens of millions of transistors on one chip. But the packaging and cooling designs have only a limited ability to remove the excess heat produced by the systems. All these factors have resulted in power consumption to be considered as one of the main problems in achieving high performance designs. The energy consumption of the clocking sub-system that is composed of the clock distribution networks (buffers and wires) and clock storage elements (flip-flops and latches) is about 30% to 60% of the total system energy. For this clock system power, 90% is consumed by the flip-flops themselves and the last branches of the clock distribution network that drives the flip-flop directly. As clock frequency increases, the latency of the flip-flop will play an even greater role in the overall cycle time. As a result, it is essential to continue venturing into higher-end approaches and realizing more refined solutions to achieve low-voltage/lowpower design while sustaining high-speed performance and small-area consumption. In this thesis, several innovative flip-flop designs for low-voltage low-power environments used are described.
Description: 186 p.
URI: http://hdl.handle.net/10356/46774
Rights: Nanyang Technological University
metadata.item.grantfulltext: restricted
metadata.item.fulltext: With Fulltext
Appears in Collections:EEE Theses

Files in This Item:
File Description SizeFormat 
EEE_THESES_123.pdf19.83 MBAdobe PDFThumbnail
View/Open

Google ScholarTM

Check

Items in DR-NTU are protected by copyright, with all rights reserved, unless otherwise indicated.