Please use this identifier to cite or link to this item:
Title: Autonomous navigation: on issues concerning measurement uncertainty
Authors: Mullane, John Stephen
Keywords: DRNTU::Engineering::Electrical and electronic engineering::Control and instrumentation::Control engineering
Issue Date: 2009
Source: Mullane, J. S. (2009). Autonomous navigation: on issues concerning measurement uncertainty. Doctoral thesis, Nanyang Technological University, Singapore.
Abstract: Exteroceptive sensors provide absolute information from the surrounding envi-ronment and are a critical aspect of any autonomous navigation algorithm. These measurements are subject to many sources of uncertainty, namely detection and data association uncertainty, spurious measurements, biasses as well as measurement noise. To deal with such uncertainty, probabilistic methods are most widely adopted, espe-cially metric based approaches. These probabilistic environmental representations, for autonomous navigation frameworks with uncertain measurements, can generally be subdivided into two main categories - grid based and feature based. Grid based approaches are popular for robotic exploration, obstacle avoidance and path planning, whereas feature based maps, with their reduced dimensionality, are primarily used for large scale localisation, i.e. SLAM. While researchers commonly distinguish both approaches based on their environmental representations, this thesis examines the fun-damental theoretical aspects of estimation theoretic algorithms for both approaches, with emphasis on the measurement likelihoods used to incorporate measurement un-certainty, and their impact on the resulting stochastic problem.
Description: 200 p.
DOI: 10.32657/10356/47025
Rights: Nanyang Technological University
Fulltext Permission: open
Fulltext Availability: With Fulltext
Appears in Collections:EEE Theses

Files in This Item:
File Description SizeFormat 
EEE_THESES_76.pdf31.75 MBAdobe PDFThumbnail

Page view(s) 5

checked on Oct 27, 2020

Download(s) 5

checked on Oct 27, 2020

Google ScholarTM




Items in DR-NTU are protected by copyright, with all rights reserved, unless otherwise indicated.