View Item 
      •   Home
      • 7. Theses and Dissertations
      • Theses and Dissertations
      • View Item
      •   Home
      • 7. Theses and Dissertations
      • Theses and Dissertations
      • View Item
      JavaScript is disabled for your browser. Some features of this site may not work without it.
      Subject Lookup

      Browse

      All of DR-NTUCommunities & CollectionsTitlesAuthorsBy DateSubjectsThis CollectionTitlesAuthorsBy DateSubjects

      My Account

      Login

      Statistics

      Most Popular ItemsStatistics by CountryMost Popular Authors

      About DR-NTU

      Microwave signal processing using photonic techniques.

      Thumbnail
      View/Open
      Te0701896A.pdf (1.294Mb)
      Author
      Zhou, Junqiang.
      Date of Issue
      2011
      School
      School of Electrical and Electronic Engineering
      Research Centre
      Network Technology Research Centre
      Abstract
      Microwave signal processing using photonic technologies is a technique to process microwave or radio frequency (RF) signals with the help of photonic devices or subsystems. Processing of RF signals conveyed by an optical carrier directly in the optical domain offers great flexibility in selecting the radio frequency of operation, RF bandwidth, and the filter response. This technique can overcome the limitations of conventional electrical signal processors such as limited bandwidth and electromagnetic interference. It also has the advantages of high rate-distance product, low loss, and tunable and adaptive functions. The major parts of the thesis are devoted to the development of the microwave signal processing techniques such as microwave photonic filter (MPF) and microwave signal instantaneous frequency measurement (IFM) using photonic techniques. In order to realize microwave photonic filter (MPF), various schemes of division, delay and summing of a modulated optical signal have been proposed in the literature. The coherent summing of optical signals is sensitive to polarization fluctuation caused by environmental perturbation. Therefore the incoherent approach is more attractive in practice for stable operation. To satisfy the requirement of incoherent summing, either the laser coherence time is needed to be shorter than the optical delay time, or the state of polarization (SOP) of the optical signals after division needs to be orthogonal. Tunability is an important feature of microwave photonic filters. Based on the working principles of microwave photonic filters, tunability can be realized through changing the number of taps, tap weights, and time delay between taps.
      Subject
      DRNTU::Engineering::Electrical and electronic engineering::Optics, optoelectronics, photonics
      DRNTU::Engineering::Electrical and electronic engineering::Electronic systems::Signal processing
      Type
      Thesis
      Collections
      • Theses and Dissertations

      Show full item record


      NTU Library, Nanyang Avenue, Singapore 639798 © 2011 Nanyang Technological University. All rights reserved.
      DSpace software copyright © 2002-2015  DuraSpace
      Contact Us | Send Feedback
      Share |    
      Theme by 
      Atmire NV
       

       


      NTU Library, Nanyang Avenue, Singapore 639798 © 2011 Nanyang Technological University. All rights reserved.
      DSpace software copyright © 2002-2015  DuraSpace
      Contact Us | Send Feedback
      Share |    
      Theme by 
      Atmire NV
       

       

      DCSIMG