Please use this identifier to cite or link to this item:
Title: Understanding and improving the microbial fuel cell anodic electron transfer process
Authors: Peng, Luo
Keywords: DRNTU::Engineering::Environmental engineering::Environmental protection
Issue Date: 2012
Source: Peng, L. (2012). Understanding and improving the microbial fuel cell anodic electron transfer process. Doctoral thesis, Nanyang Technological University, Singapore.
Abstract: The cell surface c-type cytochromes (c-Cyts) of Shewanella oneidensis demonstrated irreversible electrochemistry and sluggish electron transfer (ET) rate. c-Cyts could accumulate at the Shewanella-electrode interface when a more positive potential was applied to the electrode. Such accumulation may insulate the electrode from flavins, a more effective ET pathway utilized by Shewanella. This potential-dependent physiology had been observed with Ferrimonas balearica as well, which is genetically distant from S. oneidensis. This supported the representiveness of the model exoelectrogen. To promote the heterogeneous ET through S. oneidensis outer membrane c-Cyts, the electrode was modified with carbon nanotubes (CNTs). This modification transformed the rectification behavior of the OM c-Cyts and enhanced their heterogeneous rate constant. The bioelectrocatalytic current generation recorded by chronoamperometry was increased for over 80 times. Furthermore, in a fuel cell catalyzed by mixed microbial consortium, the CNT modified anode was shown to enhance power generation with promoted ET kinetics.
DOI: 10.32657/10356/48051
Fulltext Permission: open
Fulltext Availability: With Fulltext
Appears in Collections:CEE Theses

Files in This Item:
File Description SizeFormat 
TC0600392D.pdf2.01 MBAdobe PDFThumbnail

Page view(s) 20

Updated on Nov 26, 2020

Download(s) 50

Updated on Nov 26, 2020

Google ScholarTM




Items in DR-NTU are protected by copyright, with all rights reserved, unless otherwise indicated.