Please use this identifier to cite or link to this item: https://hdl.handle.net/10356/48397
Title: Nano-enhanced thermoelectric materials via melt spinning
Authors: Ady Suwardi
Keywords: DRNTU::Engineering::Nanotechnology
Issue Date: 2012
Abstract: Melt Spinning has been an attractive method for bulk processing owing to its scalability, fast processing and rapid cooling. It is a promising method to produce bulk nanostructured materials which requires rapid cooling and large scale production at the same time. Melt Spinning technique has been employed to prepare multiphase Sb2Te3 – SnTe in this project. Sb2Te3 was used because it is an established TE material that has a high ZT (≈ 1) and SnTe was used due to its high electrical conductivity and good TE properties. Various compositions ranging from pure SnTe, 80%SnTe – 20%Sb2Te3, 88%SnTe – 12%Sb2Te3, 94%SnTe – 6%Sb2Te3 and pure Sb2Te3 have been prepared using Melt Spinning and were characterized using SEM, XRD, laser flash and ZEM. The resulting ZT has been calculated based on their thermal conductivity, electrical conductivity and Seebeck coefficient. It was found out that 94%SnTe – 6%Sb2Te3 has the highest ZT compared to the rest of multiphase compositions. Nevertheless, the ZT of pure Sb2Te3 obtained was still higher compared to the ZT value 94%SnTe – 6%Sb2Te3. Hence, it showed that there is no enhancement in the TE properties of the multiphase material. A possible reason was due to the formation of SnSb2Te4 besides SnTe and Sb2Te3, leading to bad TE properties.
URI: http://hdl.handle.net/10356/48397
Schools: School of Materials Science and Engineering 
Rights: Nanyang Technological University
Fulltext Permission: restricted
Fulltext Availability: With Fulltext
Appears in Collections:MSE Student Reports (FYP/IA/PA/PI)

Files in This Item:
File Description SizeFormat 
FYP Report Ady Suwardi.pdf
  Restricted Access
FYP report1.12 MBAdobe PDFView/Open

Page view(s) 10

967
Updated on Mar 26, 2025

Download(s) 50

44
Updated on Mar 26, 2025

Google ScholarTM

Check

Items in DR-NTU are protected by copyright, with all rights reserved, unless otherwise indicated.