Please use this identifier to cite or link to this item:
Title: Mapping streaming applications to OpenCL
Authors: Abhishek Ray
Keywords: DRNTU::Engineering::Computer science and engineering::Computer systems organization::Performance of systems
Issue Date: 2012
Abstract: Graphic processing units (GPUs) as hardware platforms have been gaining popularity in general purpose and high performance computing. A GPU is made up of a number of streaming multiprocessors (SM), each of which consists of many processing cores. A large number of general-purpose applications have been mapped onto GPUs efficiently. Stream processing applications, however, exhibit properties such as unfavorable data movement patterns and low computation-to-communication ratio that might lead to a poor performance on a GPU. OpenCL is an open and free standard from Khronos Group [17]. It allows programs to be developed for and executed on multiple platforms like CPUs, GPUs, FPGAs, DSPs and many more. Firstly, this project introduces the automated mapping framework developed earlier that maps most stream processing applications onto NVIDIA GPUs efficiently by taking into account its architectural characteristics. Secondly, it discusses the implementation details of porting the mapping framework onto AMD GPUs and evaluates the performance of the mapping framework by running several benchmarks. Lastly, it compares the performance between the mapping frameworks on two different architectures and presents a fair performance comparison between the two different architectures.
Rights: Nanyang Technological University
Fulltext Permission: restricted
Fulltext Availability: With Fulltext
Appears in Collections:SCSE Student Reports (FYP/IA/PA/PI)

Files in This Item:
File Description SizeFormat 
  Restricted Access
Final Year Project2.33 MBAdobe PDFView/Open

Google ScholarTM


Items in DR-NTU are protected by copyright, with all rights reserved, unless otherwise indicated.