Please use this identifier to cite or link to this item:
Title: Self-configurable memetic algorithm
Authors: Le, Minh Nghia
Keywords: DRNTU::Engineering::Computer science and engineering::Theory of computation::Analysis of algorithms and problem complexity
Issue Date: 2012
Source: Le, M. N. (2012). Self-configurable memetic algorithm. Doctoral thesis, Nanyang Technological University, Singapore.
Abstract: To date, most successful advanced stochastic optimization algorithms involve some forms of individual learning or meme in their design. Memetic Algorithm (MA), as a form of hybridization between population-based and individual-based searches, represents one of the recent growing areas in evolutionary algorithm research. In the success and surge in interests on MAs, researchers have been exploring on various possible hybridizations of search operators towards the development and manual crafting of specialized algorithms that solve a specific problem or a set of problems effectively, using the domain knowledge obtained from human expertise. However, with so many population-based and individual-based procedures available for hybridizing, it is a tedious task, if not impossible, to design in advance an effective memetic algorithm for a given problem at hand. Furthermore, when high-fidelity analysis codes are used for evaluating design solutions in the optimization process, it is not uncommon for the single simulation process to take minutes, hours to days of supercomputer time to compute. Since the design cycle time of a product is directly proportional to the number of calls made to the costly analysis solvers, there has been practical needs for novel meta-model/surrogate-assisted memetic frameworks that can handle these forms of problems elegantly.
DOI: 10.32657/10356/49033
Fulltext Permission: open
Fulltext Availability: With Fulltext
Appears in Collections:SCSE Theses

Files in This Item:
File Description SizeFormat 
TsceG0600731E.pdfPhD Thesis5.03 MBAdobe PDFThumbnail

Page view(s) 50

Updated on Feb 25, 2021

Download(s) 50

Updated on Feb 25, 2021

Google ScholarTM




Items in DR-NTU are protected by copyright, with all rights reserved, unless otherwise indicated.