Please use this identifier to cite or link to this item: https://hdl.handle.net/10356/49926
Title: Low frequency stability of hydro-generator-connected power system
Authors: Seat, Rayduin Qin Fa.
Keywords: DRNTU::Engineering::Electrical and electronic engineering::Electric power::Auxiliaries, applications and electric industries
Issue Date: 2012
Abstract: In the search for clean energy sources in the world, hydroelectricity is the most widely used form of renewable energy. It accounts for 16 percent of global electricity consumption in 2010. Indeed, a spike in the use of hydroelectricity was observed between 2003 and 2009.Earlier research into this area had investigated the effects of hydro-turbines and load on power system. By comparing the results of various designs and parameter settings of the speed governor control system, the study had demonstrated that the hydro-turbine, speed governor and the frequency-sensitive load do impact on the system low frequency stability margin. The speed governor control system needs to be calibrated properly to avoid instability. The purpose of this project is to expand on previous research, by carrying out an analytical analysis of the closed-loop control system. All the parameters in the speed governor are varied to obtain a more accurate response of the system. In comparing the different simulation results and parameter settings, it clearly shows which parameter can influence the system in a specific manner. Instability can therefore be avoided in future designs to enable better system performance.
URI: http://hdl.handle.net/10356/49926
Schools: School of Electrical and Electronic Engineering 
Rights: Nanyang Technological University
Fulltext Permission: restricted
Fulltext Availability: With Fulltext
Appears in Collections:EEE Student Reports (FYP/IA/PA/PI)

Files in This Item:
File Description SizeFormat 
SeatRayduinQinFa2012.pdf
  Restricted Access
1.52 MBAdobe PDFView/Open

Page view(s)

461
Updated on May 7, 2025

Download(s)

6
Updated on May 7, 2025

Google ScholarTM

Check

Items in DR-NTU are protected by copyright, with all rights reserved, unless otherwise indicated.