Please use this identifier to cite or link to this item:
Title: In-structure shock assessment and mitigation of structures
Authors: Zhou, Hongyuan
Keywords: DRNTU::Engineering::Civil engineering::Structures and design
Issue Date: 2012
Source: Zhou, H. Y. (2012). In-structure shock assessment and mitigation of structures. Doctoral thesis, Nanyang Technological University, Singapore.
Abstract: This thesis deals with soil-structure interaction effect and structural response analysis, in-structure shock assessment, and shock wave mitigation when a structure is subjected to a blast load. Dynamic media-structure interaction is analytically discussed in the background of an underground structure subjected to a soil-transmitted dynamic load, in which an interfacial damping is incorporated to represent the dynamic soil-structure interaction. The effects of the interaction are analyzed and the aspects affecting the interaction are discussed. With this soil-structure interaction, in-structure shock of a typical underground structure subjected to a soil-transmitted blast load induced by a subsurface detonation is analyzed with a simplified beam model and a rigid-body-motion included plate model, respectively. With acceleration time history of the derived structural member as excitation, shock response spectra are established to assess the in-structure shock level of the equipment attached to the buried structure. To mitigate the in-structure shock, a new design of underground structures is proposed by adding an isolation slab inside the structure. The excitation mechanism for the equipment within the structure is altered and the vertical shock level is effectively reduced. In addition, in-structure shock induced by a soil blast with non-zero rise time is also analyzed. A small scale test is designed and conducted to validate the prediction. Tests results indicate that the predictions are favorably comparable with the experiment. When subjected to a close range spherical airburst, the response of a blast mitigation cladding with metal foam core is determined by energy method. Shock theory and rigid-perfectly-plastic-locking model is adopted to obtain the response of metal foam under high velocity crushing. This prediction has practical significance since it delineates the situation of a cladding subjected to a close range detonation event with realistic boundary. Further, density gradient metal foam as core of a blast mitigation cladding is theoretically investigated with shock theory and rigid-perfectly-plastic-locking model.
DOI: 10.32657/10356/49983
Schools: School of Civil and Environmental Engineering 
Research Centres: Protective Technology Research Centre
Fulltext Permission: open
Fulltext Availability: With Fulltext
Appears in Collections:CEE Theses

Files in This Item:
File Description SizeFormat 
In-structure shock assessment and mitigation of structures.pdf3.18 MBAdobe PDFThumbnail

Page view(s) 10

Updated on May 18, 2024

Download(s) 10

Updated on May 18, 2024

Google ScholarTM




Items in DR-NTU are protected by copyright, with all rights reserved, unless otherwise indicated.