dc.contributor.authorYang, Peizhen
dc.date.accessioned2012-05-31T08:12:15Z
dc.date.accessioned2017-07-23T08:34:24Z
dc.date.available2012-05-31T08:12:15Z
dc.date.available2017-07-23T08:34:24Z
dc.date.copyright2012en_US
dc.date.issued2012
dc.identifier.citationYang, P. (2012). Effects of mechanical stress on the performance of metal-oxide-semiconductor transistors. Doctoral thesis, Nanyang Technological University, Singapore.
dc.identifier.urihttp://hdl.handle.net/10356/50306
dc.description.abstractStress engineering is widely used in the microelectronics industry to improve the on-current (Ion) performance of the metal-oxide-semiconductor (MOS) transistors through the strain-induced mobility enhancement. However, there are still debates regarding the relevance of the low-field mobility in the saturation drain current of the nanoscale MOS transistors. Based on velocity saturation model, the high-field velocity is independent of the low-field mobility. In the other words, velocity saturation model predicts that mobility enhancement techniques will not improve Ion of the nanoscale MOS transistors. Ballistic transport model considers an ideal situation where the channel carriers do not experience any scattering when they transit from the source to the drain. Since mobility is a concept that involves channel scattering, ballistic transport regards mobility as irrelevant in the nanoscale MOS transistors. In quasi-ballistic transport model, channel carriers will undergo a number of channel scatterings before reaching the drain. Hence, quasi-ballistic transport model is able to account for the strain-induced Ion improvement in nanoscale MOS transistors. However, the saturation drain current equation of a transistor in the quasi-ballistic model comprises parameters that are not properly defined. Furthermore, some researchers managed to use velocity saturation model to fit the saturation current of the nanoscale MOS transistor. By improvising Lundstrom’s 1997 theory on the quasiballistic transport and unifying the merits of existing transport models, we arrive at a simplified saturation drain current equation for nanoscale MOS transistors.en_US
dc.format.extent166 p.en_US
dc.language.isoenen_US
dc.subjectDRNTU::Engineering::Electrical and electronic engineering::Semiconductorsen_US
dc.titleEffects of mechanical stress on the performance of metal-oxide-semiconductor transistorsen_US
dc.typeThesis
dc.contributor.schoolSchool of Electrical and Electronic Engineeringen_US
dc.contributor.supervisorChen Tupeien_US
dc.description.degreeDOCTOR OF PHILOSOPHY (EEE)en_US


Files in this item

FilesSizeFormatView
Te0600544A.pdf7.682Mbapplication/pdfView/Open

This item appears in the following Collection(s)

Show simple item record