Please use this identifier to cite or link to this item: https://hdl.handle.net/10356/50579
Title: Proteomics study of the cellular function in response to nanomaterials
Authors: Yuan, Jifeng
Keywords: DRNTU::Engineering::Nanotechnology
Issue Date: 2012
Source: Yuan, J. F. (2012). Proteomics study of the cellular function in response to nanomaterials. Doctoral thesis, Nanyang Technological University, Singapore.
Abstract: Because of their attractive chemical and physical properties, graphitic nanomaterials and their derivatives have gained tremendous interest for applications in electronics, materials and biomedical areas. However, few detailed studies have been performed to evaluate the potential cytotoxicity of these nanomaterials on the living systems at the molecular level. In the present study, our group exploited the iTRAQ-coupled 2D LC-MS/MS approach with the purpose of characterizing the cellular functions in response to these nanomaterials at the proteome level. Specifically, single-walled carbon nanotubes (SWCNTs), graphene, as well as their derivatives such as oxidized SWCNTs and graphene oxide (GO) were tested, while the human hepatoma HepG2 cells were used as the in vitro model to study the potential cytotoxicity of these nanomaterials on the vital organ of liver. Differentially expressed proteins involved in metabolic pathway, redox regulation, cytoskeleton formation and cell growth were sucessfully identified through the iTRAQ-coupled 2D LC-MS/MS approach. Based on the protein profile, we found both SWCNTs and oxidized SWCNTs induced oxidative stress and interfered the intracellular metabolic routes, protein synthesis and cytoskeletal systems. However, only moderate variation of protein levels for the cells treated with graphene and GO was observed. Further functional assays such as cell proliferation assay, Western blotting analysis, apoptosis assay and cell cycle anlysis were carried out to confirm the data obtained from protein profile. We found oxidized SWCNTs did trigger elevated level of reactive oxygen species (ROS), perturb the cell cycle and result in a significant increase in the proportion of apoptotic cells. In contrast, these functional assays indicated there was no significant increase in the percentage of apoptotic cells and cell cycle was not severely perturbed after exposed to GO.
URI: https://hdl.handle.net/10356/50579
DOI: 10.32657/10356/50579
Fulltext Permission: open
Fulltext Availability: With Fulltext
Appears in Collections:SCBE Theses

Files in This Item:
File Description SizeFormat 
TscbeG0702624J.pdfMain article3.63 MBAdobe PDFThumbnail
View/Open

Page view(s) 20

511
Updated on May 12, 2021

Download(s) 20

211
Updated on May 12, 2021

Google ScholarTM

Check

Altmetric


Plumx

Items in DR-NTU are protected by copyright, with all rights reserved, unless otherwise indicated.