Please use this identifier to cite or link to this item:
Title: Energy efficient medium access control protocol for in-vivo multiple capsule networks
Authors: Lin, Lin
Keywords: DRNTU::Engineering::Electrical and electronic engineering::Wireless communication systems
Issue Date: 2012
Source: Lin, L. (2012). Energy efficient medium access control protocol for in-vivo multiple capsule networks. Doctoral thesis, Nanyang Technological University, Singapore.
Abstract: Wireless capsule endoscopy is a type of medical device for diagnosing diseases inside small intestine giving little discomfort to the patients. It is envisaged that several capsule devices with different functionalities work together to perform some monitoring/therapeutic work. The capsules and the outside coordinator form a wireless network. As the capsule devices are powered by batteries that are difficult to replace, energy efficient MAC protocol plays an important role. This thesis focuses on proposing a novel energy efficient Medium Access Control (MAC) protocol for multiple capsule networks. The thesis reviews the engineering aspects of wireless capsule endoscopy and the current technologies, including in-vivo wireless communication, wireless power supply, active locomotion and localization. Later, a comprehensive survey of MAC protocols for wireless sensor networks and body sensor networks is conducted. Multi-hop communication through the human body is simulated for different circuitry power. The result shows that it can save energy compared with single hop wireless communication when the circuitry power is lowered to 100 µW. This was already achieved in the lab. Based on this result, a novel TDMA based MAC protocol is proposed for multiple capsule networks. It follows an uplink, downlink asymmetric topology giving lower power consumption. The TDMA frame is proposed in detail. Changeable frame format and adaptive power control further reduce the energy consumption. Simulation result shows that the proposed MAC protocol consumes less energy than 802.15.6 draft when circuitry power is 100 µW based on randomly generated mobility pattern. Hardware implementation of the proposed TDMA MAC protocol has been conducted.
DOI: 10.32657/10356/50633
Fulltext Permission: open
Fulltext Availability: With Fulltext
Appears in Collections:MAE Theses

Files in This Item:
File Description SizeFormat 
TmG0700527C.pdf2.51 MBAdobe PDFThumbnail

Page view(s) 50

Updated on Aug 2, 2021

Download(s) 20

Updated on Aug 2, 2021

Google ScholarTM




Items in DR-NTU are protected by copyright, with all rights reserved, unless otherwise indicated.