Please use this identifier to cite or link to this item:
Title: Molecular wires : behaviour and uptake in cells.
Authors: Poh, Wee Han.
Keywords: DRNTU::Science::Biological sciences::Microbiology::Bacteria
Issue Date: 2012
Abstract: Transmembrane electron transfer molecules (TETMs) are phenylenevinylene oligoelectrolytes that associate with and insert themselves into bacterial membranes and can facilitate electron transfer across the membrane. They can be used to improve the efficiency of microbial fuel cells (MFC) and other remediation technologies that rely on transmembrane electron transport, such as reductive dechlorination. In addition, toxicities of TETMs against bacteria have been observed. In this project, we demonstrate that TETMs display anti-microbial activities towards both gram positive and gram negative bacteria, with gram positive bacteria being more susceptible to TETMs than gram negative organisms. Uptake studies suggest that the differential toxicities of TETMs against these bacteria may be due to the faster rate of uptake or the preferential accumulation of TETMs in a gram positive bacterium, as compared to a gram negative bacterium. Furthermore, membrane integrity studies indicate that TETMs result in membrane perturbation, which may be a factor accounting for their anti-microbial activity. Results from these studies provide a minimum inhibitory concentration of TETMs, and hence a guideline for the dosage to be used for their application in MFC and remediation process. In addition to their use in biotechnology for electron transfer, the results also indicated that TETMs could be potentially used as antimicrobials.
Rights: Nanyang Technological University
Fulltext Permission: restricted
Fulltext Availability: With Fulltext
Appears in Collections:SBS Student Reports (FYP/IA/PA/PI)

Files in This Item:
File Description SizeFormat 
FYP thesis for submission_Final.pdf
  Restricted Access
Thesis1.68 MBAdobe PDFView/Open

Page view(s) 20

checked on Oct 31, 2020

Download(s) 20

checked on Oct 31, 2020

Google ScholarTM


Items in DR-NTU are protected by copyright, with all rights reserved, unless otherwise indicated.