Please use this identifier to cite or link to this item: https://hdl.handle.net/10356/51095
Full metadata record
DC FieldValueLanguage
dc.contributor.authorYang, Tianyi.en
dc.date.accessioned2013-01-09T04:36:44Zen
dc.date.available2013-01-09T04:36:44Zen
dc.date.copyright2012en
dc.date.issued2012en
dc.identifier.citationYang, T. (2012). Nanomechanics of carbon nanotubes creep, inter-tubular friction, and their interactions with graphene oxide. Doctoral thesis, Nanyang Technological University, Singapore.en
dc.identifier.urihttps://hdl.handle.net/10356/51095en
dc.description.abstractCarbon nanotubes (CNTs) are of great interest for load-bearing applications because of their excellent mechanical properties. While much effort has been made in the last decade in order to address problems that obscure the applications of CNTs with their remarkable properties fully exploited from both experimental and theoretical perspectives, some fundamental issues regarding the nanomechanical behavior of individual CNTs at noncritical stress, the interaction between CNTs in their assembled forms and, along with the development of a method for effectively dispersing CNTs in aqueous and polymer media with their intrinsic properties retained are far from being settled. In this study, we first focus on probing the fracture mechanisms of CNTs creep using classical molecular dynamics (MD) and nudged elastic band (NEB) methods. The long-timescale microstructural evolution of CNTs at relatively low external stress is modeled by dividing the continuous process into a series of successive discrete transitions between metastable states. Our results indicate that there exist bifurcation states of the failure mechanism in armchair CNT: brittle-type fracture dominates the fracture if external stress exceeds 42.2 GPa for a (8, 8) CNT; alternatively, plastic deformation caused by the nucleation and diffusion of a specific type of defects, 5|7 dislocations, takes place, leads to the necking of the CNT before eventual fracture. Since the time-dependent behavior in CNT is only meaningfully characterized in engineering applications by deformation rate, and the relevant quantities that require sampling over a time dimension too large for atomistic simulation to reach, we adopt the concept from kinetic fracture theory.en
dc.format.extent220 p.en
dc.language.isoenen
dc.subjectDRNTU::Engineeringen
dc.titleNanomechanics of carbon nanotubes creep, inter-tubular friction, and their interactions with graphene oxide.en
dc.typeThesisen
dc.contributor.supervisorLiao Kinen
dc.contributor.schoolSchool of Chemical and Biomedical Engineeringen
dc.description.degreeDOCTOR OF PHILOSOPHY (SCBE)en
dc.identifier.doi10.32657/10356/51095en
item.fulltextWith Fulltext-
item.grantfulltextopen-
Appears in Collections:SCBE Theses
Files in This Item:
File Description SizeFormat 
TscbeG0702608A.pdf43.64 MBAdobe PDFThumbnail
View/Open

Page view(s)

344
checked on Sep 30, 2020

Download(s)

238
checked on Sep 30, 2020

Google ScholarTM

Check

Altmetric


Plumx

Items in DR-NTU are protected by copyright, with all rights reserved, unless otherwise indicated.