Please use this identifier to cite or link to this item: https://hdl.handle.net/10356/51377
Title: Synthesis of nanomaterials for thin films solar cells application
Authors: Wardhana, Agung Mulia.
Keywords: DRNTU::Engineering::Materials::Nanostructured materials
Issue Date: 2013
Abstract: Solar cell has been sought after as alternative power source for our daily life. However, there are several constraints in the extensive usage of solar cells, such as efficiency and stringent condition fabrication requirement. One possible solution to these problems is with the use of chalcopyrite-based thin film solar cells. High efficiency of solar cells can be achieved with these materials. In this report, two methods of processing of chalcopyrite-based thin film solar cell based on copper indium selenide (CISe) were proposed. The first method is the nanoparticle method. In this work, the synthesis of crystalline CISe nanoparticle were studied. The second method involves the solution deposition of the precursors. In this work, the deposition method and post-deposition annealing condition to produce crystalline CISe thin film are studied. The results of the experiments concluded that both methods were feasible to produce crystalline CISe thin film for solar cell applications. The nanoparticle method was found to produce better results compared to solution deposition method. However, both have different potential for application in large-scale production.
URI: http://hdl.handle.net/10356/51377
Rights: Nanyang Technological University
Fulltext Permission: restricted
Fulltext Availability: With Fulltext
Appears in Collections:MSE Student Reports (FYP/IA/PA/PI)

Files in This Item:
File Description SizeFormat 
MSE12-214.pdf
  Restricted Access
Final Year Project Report987.03 kBAdobe PDFView/Open

Page view(s) 20

256
checked on Oct 26, 2020

Download(s) 20

14
checked on Oct 26, 2020

Google ScholarTM

Check

Items in DR-NTU are protected by copyright, with all rights reserved, unless otherwise indicated.