Please use this identifier to cite or link to this item:
Title: Flexible nanocomposite electrode materials for energy applications
Authors: Muhammad Razis Mohamed Rahim.
Keywords: DRNTU::Engineering::Materials::Nanostructured materials
Issue Date: 2013
Abstract: Flexible energy storage devices have been extensively used as portable and bendable electronic appliances and biomaterials. This niche area has led to a strong interest in terms of research and reviews on polymer, paper and textile – based devices. Polymer – based devices have garnered interest since it has the capabilities to manufacture polymer – based storage devices like supercapacitors and batteries. However, polymer – based devices have poor cycling stabilities, high self-discharge rates, and mass transport limitations within thick polymer layers. Paper and textiles are versatile, flexible, porous and cheap compared to other metallic and polymeric substrates. Furthermore, raw materials for making paper and textiles are earth-abundant and renewable. This allows the wide use of paper in a variety of applications. However, paper is non – conducting. This project aims to produce low cost and efficient conductive A4 paper and filter paper by introducing electrically conductive CNT into the paper fibers through a simple and scalable dipping and drying method. MWCNT was mixed with Chinese ink, together with PVA and DI water, to obtain a dispersion of MWCNT – ink suspension. These suspensions were applied to A4 paper and filter paper firstly, through dip-coating and subsequent drying, to form conductive papers. The conductive papers were characterized in terms of microstructures and resistivity. The resistivity of the conductive papers was closely related to the composition of the suspensions, i.e. the contents of MWCNT, PVA and the Chinese ink. The processing conditions of the conductive papers were optimized in terms of their effects on resistivity.
Rights: Nanyang Technological University
Fulltext Permission: restricted
Fulltext Availability: With Fulltext
Appears in Collections:MSE Student Reports (FYP/IA/PA/PI)

Files in This Item:
File Description SizeFormat 
Final Draft_edited.pdf
  Restricted Access
884.75 kBAdobe PDFView/Open

Page view(s)

Updated on Nov 25, 2020


Updated on Nov 25, 2020

Google ScholarTM


Items in DR-NTU are protected by copyright, with all rights reserved, unless otherwise indicated.