Please use this identifier to cite or link to this item:
Title: Template-directed synthesis of transition metal oxide (TMO)/ordered mesoporous carbon (OMC) composite as anode material in lithium ion battery
Authors: Wang, Paul Luyuan.
Keywords: DRNTU::Engineering::Materials::Energy materials
Issue Date: 2013
Abstract: In this report, we studied a simple and general method of impregnating different weight percent of Transition Metal Oxide (TMO) into the pores of Ordered Mesoporous Carbon (OMC). TMOs were chosen for this study owing to its high theoretical capacity and OMC is used to alleviate the volume swing generated during the charge-discharge process suffered by most TMOs. Two types of TMOs namely: Iron Oxide and Cobalt Oxide were studied. Various composition of composites ranging from 27.8 wt% Fe3O4-OMC, 65.9 wt% Fe3O4-OMC composite, 27.3 wt% CoO-OMC and 56.8 wt% CoO(Co3O4)-OMC have been prepared using the simple synthesis method and characterized using SEM, XRD and TGA. Cyclic Voltammetry (CV) was carried out to determine the potential at which redox reaction takes places during charging/discharging. Electrochemical performance test was also carried out to understand how the cycability of both TMO-OMC composites vary with increasing wt % of TMOs. It was found that a higher wt % of oxide (in both cases) would give rise to a more stable cycling performance at the 50th cycle. A possible reason mentioned in literature would be attributed to the slow buildup of the organic polymeric/gel-like layer due to higher amount of inaccessible active material.
Rights: Nanyang Technological University
Fulltext Permission: restricted
Fulltext Availability: With Fulltext
Appears in Collections:MSE Student Reports (FYP/IA/PA/PI)

Files in This Item:
File Description SizeFormat 
  Restricted Access
Final Report6.71 MBAdobe PDFView/Open

Google ScholarTM


Items in DR-NTU are protected by copyright, with all rights reserved, unless otherwise indicated.