Please use this identifier to cite or link to this item: https://hdl.handle.net/10356/53148
Full metadata record
DC FieldValueLanguage
dc.contributor.authorHe, Jianlei.
dc.date.accessioned2013-05-30T04:10:09Z
dc.date.available2013-05-30T04:10:09Z
dc.date.copyright2011en_US
dc.date.issued2011
dc.identifier.urihttp://hdl.handle.net/10356/53148
dc.description.abstractRadial basis function neural networks (RBF neural networks), as an alternative to multilayer perceptions, have been found to be very advantageous to pattern recognition, machine learning and artificial intelligence. This thesis addresses the problem of RBF neural networks for pattern classification.en_US
dc.format.extent108 p.en_US
dc.language.isoenen_US
dc.subjectDRNTU::Engineering::Electrical and electronic engineeringen_US
dc.titleRBF neural networks for pattern classificationen_US
dc.typeThesis
dc.contributor.supervisorMao Kezhien_US
dc.contributor.schoolSchool of Electrical and Electronic Engineeringen_US
dc.description.degreeMaster of Science (Computer Control and Automation)en_US
item.grantfulltextrestricted-
item.fulltextWith Fulltext-
Appears in Collections:EEE Theses
Files in This Item:
File Description SizeFormat 
HeJianlei11.pdf
  Restricted Access
6.32 MBAdobe PDFView/Open

Page view(s) 50

299
Updated on Nov 21, 2021

Download(s)

14
Updated on Nov 21, 2021

Google ScholarTM

Check

Items in DR-NTU are protected by copyright, with all rights reserved, unless otherwise indicated.