dc.contributor.authorLi, Fengji
dc.date.accessioned2013-06-06T07:59:58Z
dc.date.accessioned2017-07-23T08:40:44Z
dc.date.available2013-06-06T07:59:58Z
dc.date.available2017-07-23T08:40:44Z
dc.date.copyright2013en_US
dc.date.issued2013
dc.identifier.citationLi, F. (2013). Growth mechanism of silicon nanowires from nickel-coated silicon wafer. Doctoral thesis, Nanyang Technological University, Singapore.
dc.identifier.urihttp://hdl.handle.net/10356/53653
dc.description.abstractCrystalline silicon (Si) nanowires are important building blocks in devices of photonics, quantum-dots, optoelectronics, and energy. Thermal annealing of metal-covered Si wafers gives rise to clean Si nanowires without metallic catalyst at the tip. The process does not need flammable or toxic gases. However, the growth mechanism is yet elucidated. This project grows Si nanowires by adopting the thermal annealing method: nickel (Ni) is sputtered on Si wafers as catalyst and thereafter a layer of carbon is sputtered to protect Si nanowires from oxidation during thermal annealing. Careful studies via transmission electron microscopy and selected area electron diffraction patterns elucidate the growth process and the relationship between the seeding Ni particle and the grown Si nanowire. The seeding Ni particles are embedded in the Ni-Si-O nanoclusters that are connected with the grown Si nanowires at the end of the nanowire growth. The growth orientation of Ni-seeded Si nanowires is not dictated by surface energy of the various nanocrystal planes, but follows specific structure sensitive principle with the seeding Ni nanoparticles to minimize the mismatch in lattice spacing and dihedral angle at the wire/particle interface. It is inferred that the growth orientation of Si nanowires is determined by the ordered planes of the Ni catalyst particle at the wire/particle interface. The various morphologies of the nanowires are controlled by the diameter and vibration of the Ni-Si-O droplet, the distribution of the Ni-Si, Ni-Si-Oy (y≈1) and Ni-Si-Ox (x≈2) phases, and the supersaturated content in the Ni-Si-O droplet.en_US
dc.format.extent197 p.en_US
dc.language.isoenen_US
dc.subjectDRNTU::Engineering::Materialsen_US
dc.titleGrowth mechanism of silicon nanowires from nickel-coated silicon waferen_US
dc.typeThesis
dc.contributor.schoolSchool of Mechanical and Aerospace Engineeringen_US
dc.contributor.supervisorSam Zhang Shanyongen_US
dc.description.degreeDOCTOR OF PHILOSOPHY (MAE)en_US
dc.identifier.doihttps://doi.org/10.32657/10356/53653


Files in this item

FilesSizeFormatView
Tm0800194H.pdf8.624Mbapplication/pdfView/Open

This item appears in the following Collection(s)

Show simple item record