Please use this identifier to cite or link to this item:
Title: Fabrication and characterization of highly ordered SiPt-CuO nanoarray
Authors: Liu, Chao.
Keywords: DRNTU::Engineering::Materials
Issue Date: 2013
Abstract: Copper oxide (CuO) has been extensively studied recently due to its unique properties and diverse applications. Nanostructured CuO is thought to be a promising material in the development of non-enzymatic glucose sensor. Among all, shape-controlled synthesis of perfectly ordered CuO nanostructures has received great attention in both chemistry and material science. This is because the ordered arrays show its potential applications in many different fields. This project is to synthesis highly ordered SiPt-Cu arrays with core-shell structure. First Pt was deposited onto the Si substrated through ion beam assisted chemical vapor deposition method in Focus Ion Beam (FIB) system. Then the SiPt substrate was etched by the ion beam to form a highly ordered SiPt nanoneedle array. Cu shell was subsequently coated onto the top of the nanoneedles by electrodeposition. Then Cu shell was oxidized into CuO by continuous potential cycling in NaOH solution. Scanning Electron Microscope (SEM) and Transmission Electron Microscope (TEM) were employed to investigate this core-shell structure of the nanoneedle. It was found that the Cu shell was connected to the Si substrate through the intermediate Pt layer, and the villiform-like CuO nanostructures were uniformly covered on the surface of the Cu shell. It is expected that the hybrid SiPt-CuO array electrode exhibits excellent electrochemical sensitivity and capacitance. It may used in the non-enzymatic glucose sensor industry. Moreover, success of fabrication of core-shell SiPt-CuO hybrid nanoarrays also provides a versatile method to assemble nanodevices with other applications.
Rights: Nanyang Technological University
Fulltext Permission: restricted
Fulltext Availability: With Fulltext
Appears in Collections:MSE Student Reports (FYP/IA/PA/PI)

Files in This Item:
File Description SizeFormat 
  Restricted Access
2.96 MBAdobe PDFView/Open

Page view(s) 50

checked on Oct 26, 2020

Download(s) 50

checked on Oct 26, 2020

Google ScholarTM


Items in DR-NTU are protected by copyright, with all rights reserved, unless otherwise indicated.