Please use this identifier to cite or link to this item: https://hdl.handle.net/10356/53769
Full metadata record
DC FieldValueLanguage
dc.contributor.authorLiu, Chao.
dc.date.accessioned2013-06-07T04:28:51Z
dc.date.available2013-06-07T04:28:51Z
dc.date.copyright2013en_US
dc.date.issued2013
dc.identifier.urihttp://hdl.handle.net/10356/53769
dc.description.abstractCopper oxide (CuO) has been extensively studied recently due to its unique properties and diverse applications. Nanostructured CuO is thought to be a promising material in the development of non-enzymatic glucose sensor. Among all, shape-controlled synthesis of perfectly ordered CuO nanostructures has received great attention in both chemistry and material science. This is because the ordered arrays show its potential applications in many different fields. This project is to synthesis highly ordered SiPt-Cu arrays with core-shell structure. First Pt was deposited onto the Si substrated through ion beam assisted chemical vapor deposition method in Focus Ion Beam (FIB) system. Then the SiPt substrate was etched by the ion beam to form a highly ordered SiPt nanoneedle array. Cu shell was subsequently coated onto the top of the nanoneedles by electrodeposition. Then Cu shell was oxidized into CuO by continuous potential cycling in NaOH solution. Scanning Electron Microscope (SEM) and Transmission Electron Microscope (TEM) were employed to investigate this core-shell structure of the nanoneedle. It was found that the Cu shell was connected to the Si substrate through the intermediate Pt layer, and the villiform-like CuO nanostructures were uniformly covered on the surface of the Cu shell. It is expected that the hybrid SiPt-CuO array electrode exhibits excellent electrochemical sensitivity and capacitance. It may used in the non-enzymatic glucose sensor industry. Moreover, success of fabrication of core-shell SiPt-CuO hybrid nanoarrays also provides a versatile method to assemble nanodevices with other applications.en_US
dc.format.extent47 p.en_US
dc.language.isoenen_US
dc.rightsNanyang Technological University
dc.subjectDRNTU::Engineering::Materialsen_US
dc.titleFabrication and characterization of highly ordered SiPt-CuO nanoarrayen_US
dc.typeFinal Year Project (FYP)en_US
dc.contributor.schoolSchool of Materials Science and Engineeringen_US
dc.description.degreeBachelor of Engineering (Materials Engineering)en_US
dc.contributor.supervisor2A P Huang Yizhongen_US
item.fulltextWith Fulltext-
item.grantfulltextrestricted-
Appears in Collections:MSE Student Reports (FYP/IA/PA/PI)
Files in This Item:
File Description SizeFormat 
FYP_LIU CHAO.pdf
  Restricted Access
2.96 MBAdobe PDFView/Open

Page view(s) 50

190
Updated on Dec 4, 2020

Download(s)

7
Updated on Dec 4, 2020

Google ScholarTM

Check

Items in DR-NTU are protected by copyright, with all rights reserved, unless otherwise indicated.